留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多节链式倾转旋翼飞行器重构控制与运动仿真

王续乔 来飞龙 赵昌丽

王续乔,来飞龙,赵昌丽. 多节链式倾转旋翼飞行器重构控制与运动仿真[J]. 北京航空航天大学学报,2024,50(5):1523-1531 doi: 10.13700/j.bh.1001-5965.2022.0522
引用本文: 王续乔,来飞龙,赵昌丽. 多节链式倾转旋翼飞行器重构控制与运动仿真[J]. 北京航空航天大学学报,2024,50(5):1523-1531 doi: 10.13700/j.bh.1001-5965.2022.0522
WANG X Q,LAI F L,ZHAO C L. Reconfiguration control and motion simulation of tilt-rotor aircraft with multilinks[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1523-1531 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0522
Citation: WANG X Q,LAI F L,ZHAO C L. Reconfiguration control and motion simulation of tilt-rotor aircraft with multilinks[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1523-1531 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0522

多节链式倾转旋翼飞行器重构控制与运动仿真

doi: 10.13700/j.bh.1001-5965.2022.0522
基金项目: 天津市应用基础研究多元投入基金青年项目(21JCQNJC00870);中央高校基本科研业务费专项资金(3122019059)
详细信息
    通讯作者:

    E-mail:wang_xu_qiao@163.com

  • 中图分类号: V221+.3;TB553

Reconfiguration control and motion simulation of tilt-rotor aircraft with multilinks

Funds: Youth Project of Tianjin Applied Basic Research Multi-investment Fund (21JCQNJC00870); The Fundamental Research Funds for the Central Universities (3122019059)
More Information
  • 摘要:

    多节链式旋翼飞行器具有构形可变换的特点,是应对运动空间变化的一种有效构形设计方式。受限于构形变化下电机共轴带来的横向转动力矩的缺失,多节链式旋翼飞行器的动态重构飞行具有无法达成的临界构形区间。为此,设计了具备横向倾转的链式旋翼机体结构,以单机臂为模块化结构基本单元,通过旋转关节实现水平向的构形变化,机臂中段配置倾转矢量关节,用以提供滚转力矩支撑。在机体运动学、动力学模型推导的基础上,引入虚拟控制量对控制分配进行线性化处理,利用Moore-Penrose伪逆求解控制效率矩阵,面向全构形变换设计了基于全驱动控制的飞行控制律。对飞行器典型构形位姿控制的稳定性、构形变换控制的可行性进行实验论证,仿真结果表明:在飞行器各典型构形飞行状态下,姿态各轴向角度跟踪最大误差不超过0.05°,构形变换过程中,姿态各轴向角度跟踪误差不超出0.1°,2种情况下,位置偏差均能控制在1 mm以内,飞行器具备各构形下稳定飞行及构形变换的能力,为进一步开展动态重构及稳健飞行提供了必要条件。

     

  • 图 1  飞行器本体设计

    Figure 1.  Aircraft body design

    图 2  飞行器典型构形

    Figure 2.  Typical configuration of aircraft

    图 3  具有加性不确定性的控制系统

    Figure 3.  Control systems with additive uncertainty

    图 4  “口”字形构形位姿跟踪误差

    Figure 4.  Tracking error of position and posture of the aircraft in a square shape

    图 5  过渡构形1位姿跟踪误差

    Figure 5.  Tracking error of position and posture of transitional configuration 1

    图 6  过渡构形2位姿跟踪误差

    Figure 6.  Tracking error of position and posture of transitional configuration 2

    图 7  “一”字形构形位姿跟踪误差

    Figure 7.  Tracking error of position and posture of the aircraft in a straight line shape

    图 8  机械关节角度变化

    Figure 8.  Angle changes of mechanical joints

    图 9  构型连续变化下飞行器位姿跟踪误差

    Figure 9.  Tracking error of aircraft’s position and posture when it’s configuration continuously changes

    图 10  偏航角PID控制与动态PID动态特性对比

    Figure 10.  Comparison of yaw angle dynamic characteristics between PID control and dynamic PID control

    表  1  动态PID参数

    Table  1.   Parameters of dynamic PID

    状态 $ {K_{\mathrm{P}}} $ $ {K_{\mathrm{D}}} $
    40 15
    32 20
    40 30
    100 80
    下载: 导出CSV
  • [1] 陈宗基, 魏金钟, 王英勋, 等. 无人机自主控制等级及其系统结构研究[J]. 航空学报, 2011, 32(6): 1075-1083.

    CHEN Z J, WEI J Z, WANG Y X, et al. UAV autonomous control levels and system structure[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6): 1075-1083(in Chinese).
    [2] 张钊, 杨忠, 段雨潇, 等. 主动变形四旋翼自抗扰飞行控制方法[J]. 控制理论与应用, 2021, 38(4): 444-456.

    ZHANG Z, YANG Z, DUAN Y X, et al. Active disturbance rejection control method for actively deformable quadrotor[J]. Control Theory & Applications, 2021, 38(4): 444-456(in Chinese).
    [3] 卢凯文, 杨忠, 张秋雁, 等. 推力矢量可倾转四旋翼自抗扰飞行控制方法[J]. 控制理论与应用, 2020, 37(6): 1377-1387.

    LU K W, YANG Z, ZHANG Q Y, et al. Active disturbance rejection flight control method for thrust-vectored quadrotor with tiltable rotors[J]. Control Theory & Applications, 2020, 37(6): 1377-1387(in Chinese).
    [4] 陶广宏, 房立金, 徐鑫霖, 等. 多节链式移动机器人单元模块研究与设计[J]. 机器人, 2018, 40(6): 887-893.

    TAO G H, FANG L J, XU X L, et al. Research and design of the unit module of the multi-link mobile robot[J]. Robot, 2018, 40(6): 887-893(in Chinese).
    [5] 张杰, 吴森堂. 一种变体飞行器的动力学建模与动态特性分析[J]. 北京航空航天大学学报, 2015, 41(1): 58-64.

    ZHANG J, WU S T. Dynamic modeling for a morphing aircraft and dynamic characteristics analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(1): 58-64(in Chinese).
    [6] BUCKI N, MUELLER M W. Design and control of a passively morphing quadcopter[C]//Proceedings of the International Conference on Robotics and Automation. Piscataway: IEEE Press, 2019: 9116-9122.
    [7] FALANGA D, KLEBER K, MINTCHEV S, et al. The foldable drone: A morphing quadrotor that can squeeze and fly[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 209-216. doi: 10.1109/LRA.2018.2885575
    [8] BAI Y, GURURAJAN S. Evaluation of a baseline controller for autonomous “figure-8” flights of a morphing geometry quadcopter: Flight performance[J]. Drones, 2019, 3(3): 70. doi: 10.3390/drones3030070
    [9] ZHAO M J, KAWASAKI K, ANZAI T, et al. Transformable multirotor with two-dimensional multilinks[J]. International Journal of Robotics Research, 2018, 37(9): 1085-1112. doi: 10.1177/0278364918801639
    [10] MAKI T, ZHAO M J, SHI F, et al. Model reference adaptive control of multirotor for missions with dynamic change of payloads during flight[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2020: 7433-7439.
    [11] ANZAI T, ZHAO M J, MUROOKA M, et al. Design, modeling and control of fully actuated 2D transformable aerial robot with 1 DoF thrust vectorable link module[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2019: 2820-2826.
    [12] 赵昌丽, 郭达, 王续乔, 等. 可动态重构的旋翼飞行器设计与运动特性分析[J]. 机器人, 2021, 43(5): 620-628.

    ZHAO C L, GUO D, WANG X Q, et al. Design and motion characteristics analysis on a dynamically reconfigurable rotorcraft[J]. Robot, 2021, 43(5): 620-628(in Chinese).
    [13] ANZAI T, ZHAO M, NOZAWA S, et al. Aerial grasping based on shape adaptive transformation by HALO: Horizontal plane transformable aerial robot with closed-loop multilinks structure[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2018: 6990-6996.
    [14] KAMEL M, VERLING S, ELKHATIB O, et al. The voliro omniorientational hexacopter: An agile and maneuverable tiltable-rotor aerial vehicle[J]. IEEE Robotics & Automation Magazine, 2018, 25(4): 34-44.
    [15] RAJAPPA S, RYLL M, BÜLTHOFF H H, et al. Modeling, control and design optimization for a fully-actuated hexarotor aerial vehicle with tilted propellers[C]//Proceedings of the IEEE International Conference on Robotics and Automation . Piscataway: IEEE Press, 2015: 4006-4013.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  78
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-22
  • 录用日期:  2022-07-29
  • 网络出版日期:  2022-11-19
  • 整期出版日期:  2024-05-29

目录

    /

    返回文章
    返回
    常见问答