Numerical study on heat transfer deterioration of supercritical-pressure carbon dioxide in a square channel
-
摘要:
基于二氧化碳代替碳氢燃料进行航空发动机热防护的应用,开展方形冷却通道内超临界二氧化碳传热恶化数值研究。探究沿通道轴向和周向的换热特征,通过温度、局部流量、流线的分布情况揭示传热恶化的原因,进一步通过边界层分析阐述传热恶化的演变过程。考察运行压力和壁面粗糙度对换热的影响机制。获得不同运行压力和壁面粗糙度下的传热恶化临界热流密度,建立临界热流密度预测准则。结果表明:通道顶部壁面附近高温类气态层、局部流量减小和流线畸变是传热恶化的特征,缓冲层出现湍动能剧减和流速峰值是传热恶化的原因。提高运行压力和增大壁面粗糙度有利于抑制传热恶化问题,所建准则(误差±15%)可实现对传热恶化临界热流密度的良好预测。
Abstract:Based on the use of carbon dioxide rather than hydrocarbon fuel for aero-engine thermal protection, a numerical study was conducted to examine the deterioration of supercritical carbon dioxide heat transfer in a square cooling channel. The heat transfer characteristics along the axial and circumferential directions of the channel were studied, and the reasons for the deterioration of heat transfer were explained through the distributions of temperature, local mass flux and streamlining. The evolution process of heat transfer deterioration was further elaborated by the boundary layer analysis. The effect mechanisms of operating pressure and wall roughness on heat transfer were investigated. The critical heat fluxes for heat transfer deterioration at different operating pressures and wall roughness conditions were obtained, and the critical heat flux prediction criterion was established. The findings indicate that the features of heat transfer deterioration include the streamline distortion, local mass flux reduction, and high-temperature gas-like layer close to the channel’s top wall. The severe reduction of turbulent kinetic energy and the peak of velocity in the buffer layer are the reasons for deteriorated heat transfer. Increasing the operating pressure and increasing the wall roughness can help to suppress the deteriorated heat transfer. The established criterion (error ±15%) has a good prediction for the critical heat flux of heat transfer deterioration.
-
Key words:
- square channel /
- supercritical pressure /
- carbon dioxide /
- heat transfer deterioration /
- boundary layer
-
-
[1] TAO Z, CHENG Z Y, ZHU J Q, et al. Correction of low-Reynolds number turbulence model to hydrocarbon fuel at supercritical pressure[J]. Aerospace Science and Technology, 2018, 77: 156-167. doi: 10.1016/j.ast.2018.02.038 [2] ZHANG C J, XU G Q, SUN J N, et al. Modified k-ε model for RP-3 kerosene in a horizontal circular tube at supercritical pressure[J]. Applied Thermal Engineering, 2016, 102: 1403-1411. doi: 10.1016/j.applthermaleng.2016.03.118 [3] XU K K, MENG H. Numerical study of fluid flows and heat transfer of aviation kerosene with consideration of fuel pyrolysis and surface coking at supercritical pressures[J]. International Journal of Heat and Mass Transfer, 2016, 95: 806-814. doi: 10.1016/j.ijheatmasstransfer.2015.12.050 [4] XU K K, SUN X, MENG H. Conjugate heat transfer, endothermic fuel pyrolysis and surface coking of aviation kerosene in ribbed tube at supercritical pressure[J]. International Journal of Thermal Sciences, 2018, 132: 209-218. doi: 10.1016/j.ijthermalsci.2018.06.008 [5] 周星宇, 章思龙, 秦江, 等. 半圆形截面Zigzag型通道对超临界碳氢燃料裂解流动换热特性的影响规律[C]//第六届空天动力联合会议论文集. 北京: 中国科协航空发动机产学联合体, 2021: 2503-2513.ZHOU X Y, ZHANG S L, QIN J, et al. Influence of semicircular cross-section Zigzag channel on pyrolysis flow and heat transfer characteristics of supercritical hydrocarbon fuel[C]//Proceedings of the 6th JCAP. Beijing: CAST Alliance for Aero-Engine Industry and Academy, 2021: 2503-2513. [6] HU J Y, ZHOU J, WANG N, et al. Numerical study of buoyancy’s effect on flow and heat transfer of kerosene in a tiny horizontal square tube at supercritical pressure[J]. Applied Thermal Engineering, 2018, 141: 1070-1079. doi: 10.1016/j.applthermaleng.2018.05.131 [7] SUN X, MENG H, ZHENG Y. Asymmetric heating and buoyancy effects on heat transfer of hydrocarbon fuel in a horizontal square channel at supercritical pressures[J]. Aerospace Science and Technology, 2019, 93: 105358. doi: 10.1016/j.ast.2019.105358 [8] 张卓远, 黄世璋, 高效伟. 超临界压力下正癸烷在水平矩形冷却通道内的流动传热数值模拟[J]. 航空学报, 2018, 39(12): 122297.ZHANG Z Y, HUANG S Z, GAO X W. Numerical simulation of heat transfer of n-decane under supercritical pressure in horizontal rectangular cooling channels[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 122297 (in Chinese). [9] WANG L, PAN Y C, DER LEE J, et al. Convective heat transfer characteristics of supercritical carbon dioxide in vertical miniature tubes of a uniform heating experimental system[J]. International Journal of Heat and Mass Transfer, 2021, 167: 120833. doi: 10.1016/j.ijheatmasstransfer.2020.120833 [10] BAE Y Y, KIM H Y, KANG D J. Forced and mixed convection heat transfer to supercritical CO2 vertically flowing in a uniformly-heated circular tube[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1295-1308. doi: 10.1016/j.expthermflusci.2010.06.001 [11] JAJJA S A, ZADA K R, FRONK B M. Experimental investigation of supercritical carbon dioxide in horizontal microchannels with non-uniform heat flux boundary conditions[J]. International Journal of Heat and Mass Transfer, 2019, 130: 304-319. doi: 10.1016/j.ijheatmasstransfer.2018.10.027 [12] WANG X C, XIANG M J, HUO H J, et al. Numerical study on nonuniform heat transfer of supercritical pressure carbon dioxide during cooling in horizontal circular tube[J]. Applied Thermal Engineering, 2018, 141: 775-787. doi: 10.1016/j.applthermaleng.2018.06.019 [13] DIAO L, CHEN Y, LI Y X. Nonuniform heat transfer of supercritical pressure carbon dioxide under turbulent cooling condition in circular tubes at various inclination angles[J]. Nuclear Engineering and Design, 2019, 352: 110153. doi: 10.1016/j.nucengdes.2019.110153 [14] ZHANG S J, XU X X, LIU C, et al. The buoyancy force and flow acceleration effects of supercritical CO2 on the turbulent heat transfer characteristics in heated vertical helically coiled tube[J]. International Journal of Heat and Mass Transfer, 2018, 125: 274-289. doi: 10.1016/j.ijheatmasstransfer.2018.04.033 [15] WANG K Z, XU X X, WU Y Y, et al. Numerical investigation on heat transfer of supercritical CO2 in heated helically coiled tubes[J]. The Journal of Supercritical Fluid, 2015, 99: 112-120. doi: 10.1016/j.supflu.2015.02.001 [16] 黄志豪, 李光熙, 唐桂华, 等. 单侧加热方形通道内超临界水传热研究[J]. 化工学报, 2022, 73(4): 1523-1533.HUANG Z H, LI G X, TANG G H, et al. Numerical investigation on heat transfer of supercritical water in a side-heated square channel[J]. CIESC Journal, 2022, 73(4): 1523-1533 (in Chinese). [17] 许婉婷, 许波, 王鑫, 等. 方形微通道内超临界CO2流动换热特性研究[J]. 化工学报, 2022, 73(4): 1534-1545.XU W T, XU B, WANG X, et al. Heat transfer characteristics of supercritical CO2 in square microchannels[J]. CIESC Journal, 2022, 73(4): 1534-1545 (in Chinese). [18] PIZZARELLI M, NASUTI F, ONOFRI M, et al. Heat transfer modeling for supercritical methane flowing in rocket engine cooling channels[J]. Applied Thermal Engineering, 2015, 75: 600-607. doi: 10.1016/j.applthermaleng.2014.10.008 [19] 张萌, 孙冰. 甲烷跨临界传热恶化影响因素分析[J]. 推进技术, 2020, 41(2): 382-389.ZHANG M, SUN B. Analysis of influence factors for methane transcritical heat transfer deterioration[J]. Journal of Propulsion Technology, 2020, 41(2): 382-389 (in Chinese). [20] 张萌, 孙冰. 人工粗糙度对矩形弯曲管道流动与传热数值模拟[J]. 火箭推进, 2020, 46(1): 20-27. doi: 10.3969/j.issn.1672-9374.2020.01.003ZHANG M, SUN B. Numerical simulation of flow and heat transfer in a curved rectangular channel with artificial roughness[J]. Journal of Rocket Propulsion, 2020, 46(1): 20-27 (in Chinese). doi: 10.3969/j.issn.1672-9374.2020.01.003 [21] 王彦红, 陆英楠, 李素芬, 等. 周向非均匀加热水平圆管内超临界正癸烷换热特性[J]. 化工学报, 2021, 72(3): 1342-1353.WANG Y H, LU Y N, LI S F, et al. Heat transfer characteristics of supercritical n-decane in horizontal circular tubes with circumferentially non-uniform heating[J]. CIESC Journal, 2021, 72(3): 1342-1353 (in Chinese). [22] KIM J K, JEON H K, LEE J S. Wall temperature measurements with turbulent flow in heated vertical circular/non-circular channels of supercritical pressure carbon-dioxide[J]. International Journal of Heat and Mass Transfer, 2007, 50(23-24): 4908-4911. doi: 10.1016/j.ijheatmasstransfer.2007.06.026 [23] WEN Q L, GU H Y. Numerical simulation of heat transfer deterioration phenomenon in supercritical water through vertical tube[J]. Annals of Nuclear Energy, 2010, 37(10): 1272-1280. doi: 10.1016/j.anucene.2010.05.022 [24] KAO M T, LEE M, FERNG Y M, et al. Heat transfer deterioration in a supercritical water channel[J]. Nuclear Engineering and Design, 2010, 240(10): 3321-3328. doi: 10.1016/j.nucengdes.2010.06.028 [25] ZHANG G, ZHANG H, GU H Y, et al. Experimental and numerical investigation of turbulent convective heat transfer deterioration of supercritical water in vertical tube[J]. Nuclear Engineering and Design, 2012, 248: 226-237. doi: 10.1016/j.nucengdes.2012.03.026