Heat transfer enhancement and ejection characteristics of mixing pipe with ribs for infrared suppressor
-
摘要:
为了降低直升机分流引射式红外抑制器外露遮挡罩表面温度,提出抑制器外侧混合管表面肋片强化换热结构,采用数值模拟的方法,对抑制器混合管表面肋片结构下的引射和强化传热特性进行了研究。结果表明:与混合管表面无肋片结构相比,肋化的混合管表面对流换热增加了83%,辐射换热减少了31%,遮挡罩壁面平均温度降低了7 K;遮挡罩外侧狭缝进气面积增加后,二级引射冷气量增加了近3倍,遮挡罩壁面平均温度降低了18 K;在遮挡罩上、下位置增加引射口后,引射气流可直接作用于遮挡罩高温壁面,遮挡罩壁面热斑消失。
Abstract:This paper proposes an enhanced heat transfer structure with ribs on the outer mixing pipe surface of the infrared suppressor in order to lower the surface temperature of the exposed covering shelter of the helicopter infrared suppressor. The ejection and heat transfer enhancement characteristics under the ribbed structure of the infrared suppressor's mixing pipe surface are studied using a numerical simulation. The results show that the ribbed mixing pipe surface convective heat transfer is enhanced by 83%, the radiation heat transfer is reduced by 31%, and the average temperature of the covering shelter surface is reduced by nearly 7 K compared with the mixing pipe surface without rib structure. The amount of second-stage induced ambient air is increased by nearly triple, and the average temperature of the covering shelter surface is reduced by nearly 18 K when the slit-inlet area on the covering shelter is increased. The hot spot on the covering shelter vanishes when the ejector airflow can directly operate on the high-temperature surface of the covering shelter after the ejection apertures at the up and down positions of the covering shelter are increased.
-
Key words:
- infrared suppressor /
- ribs /
- ejection /
- covering shelter /
- heat transfer enhancement
-
表 1 红外抑制器二级引射狭缝布置参数
Table 1. The parameters of the infrared suppressor secondary pilot slits
模型 外侧狭缝/(mm×mm) 上、下侧狭缝/(mm×mm) 肋片 M0 480×15 无 M1 480×15 有 M2 480×5 有 M3 480×25 有 M4 480×15 73×15 有 表 2 网格独立性验证
Table 2. Grid independence verification
网格数 引射流量/(kg·s−1) 网格数 引射流量/(kg·s−1) 3.3×106 7.0×10−2 11.2×106 5.6×10−2 5.5×106 6.1×10−2 14.3×106 5.6×10−2 7.6×106 5.8×10−2 表 3 环境冷气进口质量流量
Table 3. Ambient cooler-air inlet mass flow rate
kg/s 模型 一级引射 二级引射 外侧 上侧 下侧 M0 1.628 0.056 M1 1.630 0.057 M2 1.633 0.022 M3 1.628 0.089 M4 1.628 0.056 8.4×10−3 8.5×10−3 表 4 混合管肋化表面热流密度
Table 4. Surface heat flux density on the mixing pipe
W/m2 模型 总热流密度 辐射热流密度 对流热流密度 M0 −2 320.2 −862.1 −1 458.1 M1 −3 266.4 −596.8 −2 669.6 -
[1] TOULMAY F. Internal aerodynamics of infrared suppressors for helicopter engines[J]. Journal of the American Helicopter Society, 1988, 33(4): 4-14. doi: 10.4050/JAHS.33.4 [2] POWER G, MCCLURE M, VINH D. Advanced IR suppressor design using a combined CFD/test approach [R]. Reston: AIAA, 1994: 1994-3215. [3] RAO G A, MAHULIKAR S P. New criterion for aircraft susceptibility to infrared guided missiles[J]. Aerospace Science and Technology, 2005, 9(8): 701-712. doi: 10.1016/j.ast.2005.07.005 [4] MAQSOOD A, BIRK A M. Improving the performance of a bent ejector with inlet swirl[J]. Journal of Engineering for Gas Turbines and Power, 2008, 130(6): 061201. doi: 10.1115/1.2943196 [5] 杨宗耀, 张靖周, 单勇. 一体化红外抑制器后机身狭缝进口布置对气流组织和红外辐射特性的影响[J]. 航空学报, 2021, 42(7): 124445.YANG Z Y, ZHANG J Z, SHAN Y. Effects of slot-inlet arrangement at infrared-suppressor-integrated rear airframe on flow organization and infrared radiation characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124445 (in Chinese). [6] ZHANG J Z, SHAN Y, LI L G. Computation and validation of parameter effects on lobed mixer-ejector performances[J]. Chinese Journal of Aeronautics, 2005, 18(3): 193-198. doi: 10.1016/S1000-9361(11)60297-5 [7] 单勇, 张靖周. 波瓣喷管/气膜冷却混合管气动和红外辐射特性实验[J]. 航空学报, 2008, 29(2): 309-314. doi: 10.3321/j.issn:1000-6893.2008.02.009SHAN Y, ZHANG J Z. Experimental on aerodynamic and infrared radiation characteristics of lobed nozzle/film cooling mixing duct[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(2): 309-314 (in Chinese). doi: 10.3321/j.issn:1000-6893.2008.02.009 [8] ROGALSK A. Competitive technologies of third generation infrared photon detectors[J]. Opto-Electronics Review, 2006, 14(1): 84-98. [9] YI K J, BAEK S W, KIM M Y, et al. The effects of heat shielding in jet engine exhaust systems on aircraft survivability[J]. Numerical Heat Transfer, Part A: Applications, 2014, 66(1): 89-106. [10] 罗昕, 张靖周, 单勇, 等. 加遮挡板后二元喷管的红外辐射特性数值模拟[J]. 推进技术, 2008, 29(6): 696-700. doi: 10.3321/j.issn:1001-4055.2008.06.012LUO X, ZHANG J Z, SHAN Y, et al. Numerical simulation on the infrared radiation characteristics of two-dimensional nozzles with sheltering baffles[J]. Journal of Propulsion Technology, 2008, 29(6): 696-700 (in Chinese). doi: 10.3321/j.issn:1001-4055.2008.06.012 [11] BARANWAL N, MAHULIKAR S P. Infrared signature of aircraft engine with choked converging nozzle[J]. Journal of Thermophysics and Heat Transfer, 2016, 30(4): 854-862. doi: 10.2514/1.T4641 [12] PRESZ W, WERLE M. Multi-stage mixer/ejector system [C]//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2002. [13] 潘丞雄, 张靖周, 单勇. 双级波瓣引射混合器的引射性能[J]. 航空动力学报, 2014, 29(9): 2174-2180.PAN C X, ZHANG J Z, SHAN Y. Pumping performance for double-stage lobe mixer/ejector[J]. Journal of Aerospace Power, 2014, 29(9): 2174-2180 (in Chinese). [14] 王同辉, 王先炜, 张靖周, 等. 直升机红外抑制器遮挡罩间距对红外辐射特性的影响[J]. 航空动力学报, 2009, 24(7): 1493-1499.WANG T H, WANG X W, ZHANG J Z, et al. Effect of covering shelter on infrared radiation characteristics of helicopter infrared radiation suppressor[J]. Journal of Aerospace Power, 2009, 24(7): 1493-1499 (in Chinese). [15] 蒋坤宏, 张靖周, 单勇, 等. 一体化红外抑制器遮挡和出口修型对后机身表面温度和红外辐射特性的影响[J]. 航空学报, 2020, 41(2): 123497.JIANG K H, ZHANG J Z, SHAN Y, et al. Effects of sheltering and outlet shaping on surface temperature and infrared radiation characteristics of rear airframe with an integrating infrared suppressor[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 123497 (in Chinese). [16] 陈苏麒, 单勇, 张靖周, 等. 挡板构型对直升机红外抑制器气动与红外辐射特性影响研究[J]. 红外与激光工程, 2022, 51(8): 247-259.CHEN S Q, SHAN Y, ZHANG J Z, et al. Effect of baffle configuration on aerodynamic and infrared radiation characteristics of helicopter infrared suppressor[J]. Infrared and Laser Engineering, 2022, 51(8): 247-259 (in Chinese). [17] 张伯安. 多股分流引射式红外抑制器气动和红外辐射特性数值研究[D]. 南京: 南京航空航天大学, 2020.ZHANG B A. Numerical study on aerodynamic and infrared radiation characteristics of multi-split ejector infrared suppressor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese). [18] 蒋坤宏. 一体化红外抑制器下洗气流组织及壁面降温研究[D]. 南京: 南京航空航天大学, 2020.JIANG K H. Study on downwash airflow organization and wall cooling of integrated infrared suppressor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese). [19] PAN C X, ZHANG J Z, SHAN Y. Modeling and analysis of helicopter thermal and infrared radiation[J]. Chinese Journal of Aeronautics, 2011, 24(5): 558-567. doi: 10.1016/S1000-9361(11)60065-4 [20] PAN C X, ZHANG J Z, SHAN Y. Effects of exhaust temperature on helicopter infrared signature[J]. Applied Thermal Engineering, 2013, 51(1/2): 529-538. [21] YANG Z Y, ZHANG J Z, SHAN Y. Research on the influence of integrated infrared suppressor exhaust angle on exhaust plume and helicopter infrared radiation[J]. Aerospace Science and Technology, 2021, 118: 107013. doi: 10.1016/j.ast.2021.107013 [22] 陈苏麒, 单勇, 张靖周, 等. 直升机红外抑制器结构参数对抑制器性能影响的数值和实验研究[J]. 航空动力学报, 2023, 38(5): 83-94.CHEN S Q, SHAN Y, ZHANG J Z, et al. Numerical and experimental research on the effect of structural parameters of helicopter infrared suppressor on suppressor performance on blades[J]. Journal of Aerospace Power, 2023, 38(5): 83-94(in Chinese). [23] YANG Z Y, SHAN Y, ZHANG J Z. Numerical evaluation of the exhaust-direction effects on plume flow and helicopter infrared radiation under hover and cruise statuses[J]. Aircraft Engineering and Aerospace Technology, 2021, 93(10): 1597-1609. doi: 10.1108/AEAT-01-2021-0011 [24] 陈庚, 谭晓茗, 单勇, 等. 二元弯曲混合管出口结构参数对红外抑制器气动和辐射特性的影响[J]. 红外与激光工程, 2015, 44(6): 1704-1711. doi: 10.3969/j.issn.1007-2276.2015.06.005CHEN G, TAN X M, SHAN Y, et al. Impacts of two-dimensional curved mixing duct exit geometric parameters on flow dynamics and infrared radiation characteristics for IR suppressor[J]. Infrared and Laser Engineering, 2015, 44(6): 1704-1711(in Chinese). doi: 10.3969/j.issn.1007-2276.2015.06.005