留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红外抑制器混合管壁肋片强化传热和引射特性

吴忠诚 单勇 张靖周 杨宗耀

吴忠诚,单勇,张靖周,等. 红外抑制器混合管壁肋片强化传热和引射特性[J]. 北京航空航天大学学报,2024,50(6):2009-2017 doi: 10.13700/j.bh.1001-5965.2022.0548
引用本文: 吴忠诚,单勇,张靖周,等. 红外抑制器混合管壁肋片强化传热和引射特性[J]. 北京航空航天大学学报,2024,50(6):2009-2017 doi: 10.13700/j.bh.1001-5965.2022.0548
WU Z C,SHAN Y,ZHANG J Z,et al. Heat transfer enhancement and ejection characteristics of mixing pipe with ribs for infrared suppressor[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):2009-2017 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0548
Citation: WU Z C,SHAN Y,ZHANG J Z,et al. Heat transfer enhancement and ejection characteristics of mixing pipe with ribs for infrared suppressor[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):2009-2017 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0548

红外抑制器混合管壁肋片强化传热和引射特性

doi: 10.13700/j.bh.1001-5965.2022.0548
详细信息
    通讯作者:

    E-mail:nuaasy@nuaa.edu.cn

  • 中图分类号: V231.1

Heat transfer enhancement and ejection characteristics of mixing pipe with ribs for infrared suppressor

More Information
  • 摘要:

    为了降低直升机分流引射式红外抑制器外露遮挡罩表面温度,提出抑制器外侧混合管表面肋片强化换热结构,采用数值模拟的方法,对抑制器混合管表面肋片结构下的引射和强化传热特性进行了研究。结果表明:与混合管表面无肋片结构相比,肋化的混合管表面对流换热增加了83%,辐射换热减少了31%,遮挡罩壁面平均温度降低了7 K;遮挡罩外侧狭缝进气面积增加后,二级引射冷气量增加了近3倍,遮挡罩壁面平均温度降低了18 K;在遮挡罩上、下位置增加引射口后,引射气流可直接作用于遮挡罩高温壁面,遮挡罩壁面热斑消失。

     

  • 图 1  多股分流引射式红外抑制器示意图

    Figure 1.  Schematic diagram of infrared suppressors with multi-nozzles ejector

    图 2  红外抑制器模型示意

    Figure 2.  Schematic diagram of infrared suppressor model

    图 3  红外抑制器遮挡罩示意图

    Figure 3.  Schematic diagram of infrared suppressor's covering shelter

    图 4  计算域示意图

    Figure 4.  Schematic diagram of the computational domain

    图 5  特征面示意图

    Figure 5.  Schematic diagram of feature surfaces

    图 6  混合管沿程截面流线与温度分布

    Figure 6.  Temperature distribution and flow lines on the cross section of the mixing tube

    图 7  混合管肋化表面温度分布

    Figure 7.  Temperature distribution on the ribbed surface of the mixing pipe

    图 8  混合管内流线示意图

    Figure 8.  Schematic diagram of streamlines in the mixing pipe

    图 9  空气通道出口处流线与压力分布

    Figure 9.  Streamline and pressure distribution at the outlet of the air passage

    图 10  遮挡罩表面温度分布

    Figure 10.  Temperature distribution on the surface of the covering

    图 11  模型M4上侧狭缝引射流线

    Figure 11.  Model M4 upper side slit induced flow line

    图 12  M0、M1和M4的遮挡罩表面热流密度

    Figure 12.  Heat flux density on the covering shelter surface of M0, M1 and M4

    表  1  红外抑制器二级引射狭缝布置参数

    Table  1.   The parameters of the infrared suppressor secondary pilot slits

    模型 外侧狭缝/(mm×mm) 上、下侧狭缝/(mm×mm) 肋片
    M0 480×15
    M1 480×15
    M2 480×5
    M3 480×25
    M4 480×15 73×15
    下载: 导出CSV

    表  2  网格独立性验证

    Table  2.   Grid independence verification

    网格数 引射流量/(kg·s−1) 网格数 引射流量/(kg·s−1)
    3.3×106 7.0×10−2 11.2×106 5.6×10−2
    5.5×106 6.1×10−2 14.3×106 5.6×10−2
    7.6×106 5.8×10−2
    下载: 导出CSV

    表  3  环境冷气进口质量流量

    Table  3.   Ambient cooler-air inlet mass flow rate kg/s

    模型一级引射二级引射
    外侧上侧下侧
    M01.6280.056
    M11.6300.057
    M21.6330.022
    M31.6280.089
    M41.6280.0568.4×10−38.5×10−3
    下载: 导出CSV

    表  4  混合管肋化表面热流密度

    Table  4.   Surface heat flux density on the mixing pipe W/m2

    模型 总热流密度 辐射热流密度 对流热流密度
    M0 −2 320.2 −862.1 −1 458.1
    M1 −3 266.4 −596.8 −2 669.6
    下载: 导出CSV
  • [1] TOULMAY F. Internal aerodynamics of infrared suppressors for helicopter engines[J]. Journal of the American Helicopter Society, 1988, 33(4): 4-14. doi: 10.4050/JAHS.33.4
    [2] POWER G, MCCLURE M, VINH D. Advanced IR suppressor design using a combined CFD/test approach [R]. Reston: AIAA, 1994: 1994-3215.
    [3] RAO G A, MAHULIKAR S P. New criterion for aircraft susceptibility to infrared guided missiles[J]. Aerospace Science and Technology, 2005, 9(8): 701-712. doi: 10.1016/j.ast.2005.07.005
    [4] MAQSOOD A, BIRK A M. Improving the performance of a bent ejector with inlet swirl[J]. Journal of Engineering for Gas Turbines and Power, 2008, 130(6): 061201. doi: 10.1115/1.2943196
    [5] 杨宗耀, 张靖周, 单勇. 一体化红外抑制器后机身狭缝进口布置对气流组织和红外辐射特性的影响[J]. 航空学报, 2021, 42(7): 124445.

    YANG Z Y, ZHANG J Z, SHAN Y. Effects of slot-inlet arrangement at infrared-suppressor-integrated rear airframe on flow organization and infrared radiation characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124445 (in Chinese).
    [6] ZHANG J Z, SHAN Y, LI L G. Computation and validation of parameter effects on lobed mixer-ejector performances[J]. Chinese Journal of Aeronautics, 2005, 18(3): 193-198. doi: 10.1016/S1000-9361(11)60297-5
    [7] 单勇, 张靖周. 波瓣喷管/气膜冷却混合管气动和红外辐射特性实验[J]. 航空学报, 2008, 29(2): 309-314. doi: 10.3321/j.issn:1000-6893.2008.02.009

    SHAN Y, ZHANG J Z. Experimental on aerodynamic and infrared radiation characteristics of lobed nozzle/film cooling mixing duct[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(2): 309-314 (in Chinese). doi: 10.3321/j.issn:1000-6893.2008.02.009
    [8] ROGALSK A. Competitive technologies of third generation infrared photon detectors[J]. Opto-Electronics Review, 2006, 14(1): 84-98.
    [9] YI K J, BAEK S W, KIM M Y, et al. The effects of heat shielding in jet engine exhaust systems on aircraft survivability[J]. Numerical Heat Transfer, Part A: Applications, 2014, 66(1): 89-106.
    [10] 罗昕, 张靖周, 单勇, 等. 加遮挡板后二元喷管的红外辐射特性数值模拟[J]. 推进技术, 2008, 29(6): 696-700. doi: 10.3321/j.issn:1001-4055.2008.06.012

    LUO X, ZHANG J Z, SHAN Y, et al. Numerical simulation on the infrared radiation characteristics of two-dimensional nozzles with sheltering baffles[J]. Journal of Propulsion Technology, 2008, 29(6): 696-700 (in Chinese). doi: 10.3321/j.issn:1001-4055.2008.06.012
    [11] BARANWAL N, MAHULIKAR S P. Infrared signature of aircraft engine with choked converging nozzle[J]. Journal of Thermophysics and Heat Transfer, 2016, 30(4): 854-862. doi: 10.2514/1.T4641
    [12] PRESZ W, WERLE M. Multi-stage mixer/ejector system [C]//38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2002.
    [13] 潘丞雄, 张靖周, 单勇. 双级波瓣引射混合器的引射性能[J]. 航空动力学报, 2014, 29(9): 2174-2180.

    PAN C X, ZHANG J Z, SHAN Y. Pumping performance for double-stage lobe mixer/ejector[J]. Journal of Aerospace Power, 2014, 29(9): 2174-2180 (in Chinese).
    [14] 王同辉, 王先炜, 张靖周, 等. 直升机红外抑制器遮挡罩间距对红外辐射特性的影响[J]. 航空动力学报, 2009, 24(7): 1493-1499.

    WANG T H, WANG X W, ZHANG J Z, et al. Effect of covering shelter on infrared radiation characteristics of helicopter infrared radiation suppressor[J]. Journal of Aerospace Power, 2009, 24(7): 1493-1499 (in Chinese).
    [15] 蒋坤宏, 张靖周, 单勇, 等. 一体化红外抑制器遮挡和出口修型对后机身表面温度和红外辐射特性的影响[J]. 航空学报, 2020, 41(2): 123497.

    JIANG K H, ZHANG J Z, SHAN Y, et al. Effects of sheltering and outlet shaping on surface temperature and infrared radiation characteristics of rear airframe with an integrating infrared suppressor[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 123497 (in Chinese).
    [16] 陈苏麒, 单勇, 张靖周, 等. 挡板构型对直升机红外抑制器气动与红外辐射特性影响研究[J]. 红外与激光工程, 2022, 51(8): 247-259.

    CHEN S Q, SHAN Y, ZHANG J Z, et al. Effect of baffle configuration on aerodynamic and infrared radiation characteristics of helicopter infrared suppressor[J]. Infrared and Laser Engineering, 2022, 51(8): 247-259 (in Chinese).
    [17] 张伯安. 多股分流引射式红外抑制器气动和红外辐射特性数值研究[D]. 南京: 南京航空航天大学, 2020.

    ZHANG B A. Numerical study on aerodynamic and infrared radiation characteristics of multi-split ejector infrared suppressor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese).
    [18] 蒋坤宏. 一体化红外抑制器下洗气流组织及壁面降温研究[D]. 南京: 南京航空航天大学, 2020.

    JIANG K H. Study on downwash airflow organization and wall cooling of integrated infrared suppressor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020 (in Chinese).
    [19] PAN C X, ZHANG J Z, SHAN Y. Modeling and analysis of helicopter thermal and infrared radiation[J]. Chinese Journal of Aeronautics, 2011, 24(5): 558-567. doi: 10.1016/S1000-9361(11)60065-4
    [20] PAN C X, ZHANG J Z, SHAN Y. Effects of exhaust temperature on helicopter infrared signature[J]. Applied Thermal Engineering, 2013, 51(1/2): 529-538.
    [21] YANG Z Y, ZHANG J Z, SHAN Y. Research on the influence of integrated infrared suppressor exhaust angle on exhaust plume and helicopter infrared radiation[J]. Aerospace Science and Technology, 2021, 118: 107013. doi: 10.1016/j.ast.2021.107013
    [22] 陈苏麒, 单勇, 张靖周, 等. 直升机红外抑制器结构参数对抑制器性能影响的数值和实验研究[J]. 航空动力学报, 2023, 38(5): 83-94.

    CHEN S Q, SHAN Y, ZHANG J Z, et al. Numerical and experimental research on the effect of structural parameters of helicopter infrared suppressor on suppressor performance on blades[J]. Journal of Aerospace Power, 2023, 38(5): 83-94(in Chinese).
    [23] YANG Z Y, SHAN Y, ZHANG J Z. Numerical evaluation of the exhaust-direction effects on plume flow and helicopter infrared radiation under hover and cruise statuses[J]. Aircraft Engineering and Aerospace Technology, 2021, 93(10): 1597-1609. doi: 10.1108/AEAT-01-2021-0011
    [24] 陈庚, 谭晓茗, 单勇, 等. 二元弯曲混合管出口结构参数对红外抑制器气动和辐射特性的影响[J]. 红外与激光工程, 2015, 44(6): 1704-1711. doi: 10.3969/j.issn.1007-2276.2015.06.005

    CHEN G, TAN X M, SHAN Y, et al. Impacts of two-dimensional curved mixing duct exit geometric parameters on flow dynamics and infrared radiation characteristics for IR suppressor[J]. Infrared and Laser Engineering, 2015, 44(6): 1704-1711(in Chinese). doi: 10.3969/j.issn.1007-2276.2015.06.005
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  100
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-29
  • 录用日期:  2022-08-05
  • 网络出版日期:  2022-09-09
  • 整期出版日期:  2024-06-27

目录

    /

    返回文章
    返回
    常见问答