留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于全矩阵椭圆成像法的加筋板结构损伤检测

章盟 樊程广 余孙全

章盟,樊程广,余孙全. 基于全矩阵椭圆成像法的加筋板结构损伤检测[J]. 北京航空航天大学学报,2024,50(6):2033-2042 doi: 10.13700/j.bh.1001-5965.2022.0568
引用本文: 章盟,樊程广,余孙全. 基于全矩阵椭圆成像法的加筋板结构损伤检测[J]. 北京航空航天大学学报,2024,50(6):2033-2042 doi: 10.13700/j.bh.1001-5965.2022.0568
ZHANG M,FAN C G,YU S Q. An elliptical damage detection method using full matrix capture for stiffened plate[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):2033-2042 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0568
Citation: ZHANG M,FAN C G,YU S Q. An elliptical damage detection method using full matrix capture for stiffened plate[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):2033-2042 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0568

基于全矩阵椭圆成像法的加筋板结构损伤检测

doi: 10.13700/j.bh.1001-5965.2022.0568
基金项目: 国家自然科学基金(61601489);国防科技大学高层次创新人才培养计划
详细信息
    通讯作者:

    E-mail:chengguangfan@nudt.edu.cn

  • 中图分类号: TG115.28

An elliptical damage detection method using full matrix capture for stiffened plate

Funds: National Natural Science Foundation of China (61601489);High-Level Innovative Talent Project of National University of Defense Technology
More Information
  • 摘要:

    对航天器结构进行损伤检测对于保障航天器的可靠运行十分重要。Lamb波声学定位是一种常用的损伤检测方法,但在航天器常用的加筋板结构中,加强筋会对板中Lamb波的传播产生反射、透射、延迟叠加等效应,导致常用检测方法的效果大打折扣。为此,提出一种基于全矩阵采样和模型补偿的超声Lamb波的全矩阵椭圆成像定位方法。将全矩阵采样方法引入椭圆成像定位中,通过聚焦的方式,减小加强筋对信号的衰减和干扰所产生的误差。针对Lamb波在加强筋结构中绕筋和直达两种传播特征,提出了一种绕筋补偿策略,消除加强筋的延迟叠加影响。实验表明,全矩阵椭圆成像法能够实现损伤信号的聚焦,提高损伤定位的精度,引入绕筋补偿策略后,实现加筋板的准确损伤定位。

     

  • 图 1  铝板结构中的Lamb波频散特性曲线

    Figure 1.  Dispersion curves of Lamb waves in aluminum plate structures

    图 2  到达时间的确定

    Figure 2.  Determination of arrival time

    图 3  Lamb波过筋示意图

    Figure 3.  Schematic diagram of Lamb wave over stiffener

    图 4  传统椭圆定位法示意图

    Figure 4.  Schematic diagram of traditional elliptic positioning method

    图 5  椭圆成像法示意图

    Figure 5.  Schematic diagram of elliptic imaging method

    图 6  实验装置图

    Figure 6.  Diagram of experimental device

    图 7  平板结构损伤定位实验示意图

    Figure 7.  Schematic diagram of flat plate structure damage localization experiment

    图 8  平板信号处理

    Figure 8.  Signal processing in flat plate

    图 9  损伤D1的定位结果

    Figure 9.  Localization results of damage D1

    图 10  全矩阵椭圆成像定位结果

    Figure 10.  Localization results of FMC elliptic imaging method

    图 11  加筋板声发射源定位示意图

    Figure 11.  Diagram of acoustic emission source localization in stiffened plate

    图 12  加筋板信号处理

    Figure 12.  Signal processing in stiffened plate

    图 13  S0模态声发射源定位结果

    Figure 13.  Acoustic source localization results of S0 mode

    图 14  A0模态声发射源定位结果

    Figure 14.  Acoustic source localization results of A0 mode

    图 15  加筋板损伤定位结果

    Figure 15.  Damage localization result of stiffened plate

    图 16  激励信号时域对比

    Figure 16.  Comparison of excitation signal in time domain

    图 17  使用200 kHz激励定位损伤D1结果

    Figure 17.  Damage localization result of D1 stimulated using 200 kHz signal

    表  1  各个传感器和损伤的位置坐标

    Table  1.   Position coordinates of all sensors and damages

    项目 编号 位置坐标(x,y)/m
    传感器R1(0.2,0.4)
    R2(0.4,0.4)
    R3(0.4,0.2)
    R4(0.2,0.2)
    R5(0.200,0.25)
    R6(0.40,0.25)
    损伤D1(0.3,0.4)
    D2(0.30,0.35)
    D3(0.45,0.30)
    下载: 导出CSV

    表  2  各个压电传感器位置坐标

    Table  2.   Position coordinates of all piezoelectric sensors

    编号 正面坐标(x,y)/m 背面坐标(x,y)/m
    R1 (0.4,0.2) (0.2,0.2)
    R2 (0.35,0.20) (0.25,0.20)
    R3 (0.3,0.2) (0.3,0.2)
    R4 (0.25,0.20) (0.35,0.20)
    R5 (0.2,0.2) (0.4,0.2)
    R6 (0.15,0.20) (0.45,0.20)
    R7 (0.1,0.2) (0.5,0.2)
    T0 (0.2,0.4) (0.35,0.40)
    下载: 导出CSV
  • [1] REUSSER R S, HOLLAND S D, CHIMENTI D E, et al. Reflection and transmission of guided ultrasonic plate waves by vertical stiffeners[J]. The Journal of the Acoustical Society of America, 2014, 136(1): 170-182. doi: 10.1121/1.4883386
    [2] TANG E L, LIANG Z Q, WANG L, et al. Experimental investigation on location of debris impact source based on acoustic emission[J]. Advances in Space Research, 2019, 64(11): 2390-2404. doi: 10.1016/j.asr.2019.09.015
    [3] 谭翔飞, 何宇廷, 侯波, 等. 腐蚀环境下铜薄膜传感器金属结构裂纹监测[J]. 北京航空航天大学学报, 2017, 43(7): 1433-1441.

    TAN X F, HE Y T, HOU B, et al. Metal structure crack monitoring based on copper film sensor in corrosion environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(7): 1433-1441 (in Chinese).
    [4] 赵发刚, 冯彦军, 范凡, 等. 卫星复合材料结构在轨健康监测方法[J]. 科技导报, 2016, 34(8): 15-17.

    ZHAO F G, FENG Y J, FAN F, et al. Research on on-orbit health monitoring method about composite structure in satellites[J]. Science & Technology Review, 2016, 34(8): 15-17 (in Chinese).
    [5] 侯波, 何宇廷, 崔荣洪, 等. 基于涂层传感器的金属结构疲劳裂纹监测[J]. 北京航空航天大学学报, 2013, 39(10): 1298-1302.

    HOU B, HE Y T, CUI R H, et al. Fatigue crack monitoring of metallic structure based on coating sensor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(10): 1298-1302 (in Chinese).
    [6] 卿新林, 王奕首, 赵琳. 结构健康监测技术及其在航空航天领域中的应用[J]. 实验力学, 2012, 27(5): 517-526.

    QING X L, WANG Y S, ZHAO L. Structural health monitoring technology and its application in aeronautics and astronautics[J]. Journal of Experimental Mechanics, 2012, 27(5): 517-526 (in Chinese).
    [7] SU Z Q, YE L, LU Y. Guided Lamb waves for identification of damage in composite structures: a review[J]. Journal of Sound and Vibration, 2006, 295(3/4/5): 753-780. doi: 10.1016/j.jsv.2006.01.020
    [8] YU T H. Plate waves scattering analysis and active damage detection[J]. Sensors, 2021, 21(16): 5458. doi: 10.3390/s21165458
    [9] ZHANG Y, WANG J G, ZENG L. Damage localization in composite plates that exploits edge-reflected Lamb waves[J]. IOP Conference Series:Materials Science and Engineering, 2021, 1043(4): 042001. doi: 10.1088/1757-899X/1043/4/042001
    [10] ZENG L, HUANG L P, LIN J. Damage imaging of composite structures using multipath scattering Lamb waves[J]. Composite Structures, 2019, 216: 331-339. doi: 10.1016/j.compstruct.2019.03.008
    [11] 杨晓华, 刘学君, 张玎, 等. 基于振动声调制的板类结构裂纹定位成像[J]. 北京航空航天大学学报, 2017, 43(8): 1509-1516.

    YANG X H, LIU X J, ZHANG D, et al. Localization and imaging of crack damage in plate-like structures based on vibro-acousic modulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1509-1516 (in Chinese).
    [12] ZHAO X L, GAO H D, ZHANG G F, et al. Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring[J]. Smart Materials and Structures, 2007, 16(4): 1208-1217. doi: 10.1088/0964-1726/16/4/032
    [13] ING R K, FINK M. Time-reversed Lamb waves[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998, 45(4): 1032-1043. doi: 10.1109/58.710586
    [14] 周正干, 滕利臣, 李洋. 复杂结构焊缝缺陷双线阵全聚焦超声成像方法[J]. 北京航空航天大学学报, 2021, 47(12): 2407-2413.

    ZHOU Z G, TENG L C, LI Y. Dual-linear-array TFM ultrasonic imaging method for weld defects of complex structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2407-2413 (in Chinese).
    [15] SHEN Q, YUE S Y, LU W, et al. Ultrasonic guided wave damage detection method for stiffened plates based on deep learning[J]. Journal of Physics:Conference Series, 2021, 1894(1): 012069. doi: 10.1088/1742-6596/1894/1/012069
    [16] 徐颖娣, 袁慎芳, 彭鸽. 二维结构损伤的主动Lamb波定位技术研究[J]. 航空学报, 2004, 25(5): 476-479. doi: 10.3321/j.issn:1000-6893.2004.05.011

    XU Y D, YUAN S F, PENG G. Study on two-dimensional damage location in structure based on active lamb wave detection technique[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(5): 476-479 (in Chinese). doi: 10.3321/j.issn:1000-6893.2004.05.011
    [17] 尹本进, 李友荣, 鲁光涛. 基于Lamb波混合成像算法的薄板结构损伤定位[J]. 武汉科技大学学报, 2017, 40(2): 132-137. doi: 10.3969/j.issn.1674-3644.2017.02.010

    YIN B J, LI Y R, LU G T. Damage location for thin plate structures using hybrid imaging algorithm based on Lamb waves[J]. Journal of Wuhan University of Science and Technology, 2017, 40(2): 132-137 (in Chinese). doi: 10.3969/j.issn.1674-3644.2017.02.010
    [18] ZIMA B, RUCKA M. Guided waves for monitoring of plate structures with linear cracks of variable length[J]. Archives of Civil & Mechanical Engineering, 2016, 16(3): 387-396.
    [19] 刘增华, 徐营赞, 何存富, 等. 板状结构中基于Lamb波单模态的缺陷成像试验研究[J]. 工程力学, 2014, 31(4): 232-238.

    LIU Z H, XU Y Z, HE C F, et al. Experimental study on defect imaging based on single lamb wave mode in plate-like structures[J]. Engineering Mechanics, 2014, 31(4): 232-238 (in Chinese).
    [20] HOLMES C, DRINKWATER B W, WILCOX P D. Post-processing of the full matrix of ultrasonic transmit–receive array data for non-destructive evaluation[J]. NDT & E International, 2005, 38(8): 701-711.
    [21] FAN C G, YANG L, ZHAO Y. Preprocessing of the full matrix capture data for time-reversal-based super-resolution imaging[J]. Insight: Non-Destructive Testing and Condition Monitoring, 2017, 59(11): 586-590. doi: 10.1784/insi.2017.59.11.586
    [22] 约瑟夫·罗斯. 固体中的超声导波[M]. 高会栋, 崔寒茵, 王继锋, 译. 北京: 科学出版社, 2019: 53-55.

    ROSE J L. Ultrasonic guided waves in solid media[M]. GAO H D, CUI H Y, WANG J F, translated. Beijing: Science Press, 2019: 53-55(in Chinese).
    [23] 孙增寿, 范科举, 张波. 基于第二代小波变换的结构损伤检测研究进展[J]. 郑州大学学报(工学版), 2010, 31(1): 1-5.

    SUN Z S, FAN K J, ZHANG B. New development of research on the second wavelet transform based structural damage detection[J]. Journal of Zhengzhou University (Engineering Science), 2010, 31(1): 1-5 (in Chinese).
    [24] YU Z X, XU C, SUN J Y, et al. Guided wave propagation analysis in stiffened panel using time-domain spectral finite element method[J]. Chinese Journal of Aeronautics, 2022, 35(10): 208-221. doi: 10.1016/j.cja.2021.11.014
    [25] FAN C G, YANG L, CHEN Y, et al. Ultrasonic time-reversal-based imaging for rapid non-destructive evaluation[J]. Insight, 2018, 60(11): 613-618. doi: 10.1784/insi.2018.60.11.613
    [26] 魏勤, 骆英, 王自平, 等. Lamb波驱动器的最佳激励波形选择[J]. 压电与声光, 2011, 33(6): 863-866. doi: 10.3969/j.issn.1004-2474.2011.06.005

    WEI Q, LUO Y, WANG Z P, et al. Optimal excitation waveform selection for lamb wave actuator[J]. Piezoelectrics & Acoustooptics, 2011, 33(6): 863-866 (in Chinese). doi: 10.3969/j.issn.1004-2474.2011.06.005
    [27] 邹明霞, 关立强, 李义丰. 基于时间反转加权分布的复合材料Lamb波损伤成像[J]. 声学技术, 2021, 40(5): 630-638.

    ZOU M X, GUAN L Q, LI Y F. Lamb wave damage imaging of composite plate based on time reversal and weighted distribution[J]. Technical Acoustics, 2021, 40(5): 630-638 (in Chinese).
    [28] 王莉, 刘国强, 肖迎春. 基于代理模型的复合材料加筋壁板分层损伤定量监测方法[J]. 复合材料学报, 2020, 37(2): 302-308.

    WANG L, LIU G Q, XIAO Y C. Quantitative monitoring method for delamination damage of stiffened composite panel based on surrogate model[J]. Acta Materiae Compositae Sinica, 2020, 37(2): 302-308 (in Chinese).
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  225
  • HTML全文浏览量:  96
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30
  • 录用日期:  2022-11-11
  • 网络出版日期:  2022-12-02
  • 整期出版日期:  2024-06-27

目录

    /

    返回文章
    返回
    常见问答