-
摘要:
为提升多轴特种车辆的主动安全性与操纵稳定性,以某重型5轴特种车辆为研究对象,基于自适应协调控制策略,设计了集成主动后轮转向(ARS)与差动制动力矩分配(DBTD)的分层稳定性集成控制策略。决策层基于规则决策出ARS与DBTD子控制系统的协调控制指令;分配层基于前馈+反馈控制策略实现主动转向轮转向角的分配;基于滑膜控制与既定规则实现车轮差动制动力矩的分配。通过Trucksim与Simulink联合仿真对所提控制策略的控制效果进行验证,对比分析了高速高附转向与低速低附转向2种极限工况下稳定性控制车辆与无控制车辆的运动状态。结果表明:在集成控制系统控制下的车辆,对于高速高附工况,车辆的横摆角速度与质心侧偏角的幅值相比于无控制车辆分别降低了46%与63%,对于低速低附工况,车辆的横摆角速度与质心侧偏角的幅值相比于无控制车辆分别降低了47%与58%,集成控制系统能有效提升车辆高速高附转向时的行驶稳定性与低速低附转向时的转向灵敏度和路径跟随性能。
Abstract:In order to improve the active safety and handling stability of multi-axle special vehicles, taking a heavy-duty 5-axle special vehicle as the research object, based on the adaptive coordinated control strategy, an integrated active rear wheel steering (ARS) and differential Hierarchical stability integrated control strategy for differential braking torque distribution (DBTD). The decision-making layer decides the coordinated control instructions of the ARS and DBTD sub-control systems based on the rules. The distribution layer uses the feedforward and feedback control technique to achieve the distribution of the active steering wheel angle, and it uses the synovial film control and specified rules to realize the distribution of the wheel differential braking torque. The control effect of the control strategy is verified by the co-simulation of Trucksin and Simulink, and the motion states of the stability-controlled vehicle and the uncontrolled vehicle under the two extreme conditions of high-attachment high maneuvering steering and low-speed low-attachment steering are compared and analyzed. The findings demonstrate that, under high-speed and high-speed situations, the integrated control system-controlled vehicle’s amplitudes of the yaw rate and side-slip angle are lowered by 46% and 63%, respectively, in comparison to the uncontrolled vehicle. With the working conditions, the yaw rate and the center of mass sideslip amplitude of the vehicle are reduced by 47% and 58% respectively compared with the uncontrolled vehicle. The integrated control system can effectively improve the driving stability of the vehicle during high-speed steering and low-speed low-speed steering. Steering sensitivity and path following performance.
-
Key words:
- special vehicle /
- active steering /
- differential braking /
- integrated control /
- rules control
-
表 1 制动控制规则
Table 1. Braking control rules
理想横摆角速度判断 横摆角速度判断 制动控制策略 $ {\omega _{{\textit{z}}{\text{d}}}} > 0 $ $ \left| {{\omega _{\textit{z}}}} \right| < \left| {{\omega _{{\textit{z}}{\text{d}}}}} \right| $ 左侧车轮制动 $ \left| {{\omega _{\textit{z}}}} \right| > \left| {{\omega _{{\textit{z}}{\text{d}}}}} \right| $ 右侧车轮制动 $ {\omega _{{\textit{z}}{\text{d}}}} < 0 $ $ \left| {{\omega _{\textit{z}}}} \right| < \left| {{\omega _{{\textit{z}}{\text{d}}}}} \right| $ 右侧车轮制动 $ \left| {{\omega _{\textit{z}}}} \right| > \left| {{\omega _{{\textit{z}}{\text{d}}}}} \right| $ 左侧车轮制动 表 2 协调控制策略
Table 2. Coordinated control strategy
横向载荷转移
率判断横摆角速度判断 横摆角速度偏差判断 控制策略 $ {\mathrm{LTR}} < {\mathrm{LT}}{{\mathrm{R}}_{\text{d}}} $ $ \left| {{e_\omega }} \right| \lt {e_1} $ 不控制 $ \left| {{e_\omega }} \right| \geqslant {e_1} $ DYC $ {\mathrm{LTR}} \geqslant {\mathrm{LTR}}_{\text{d}} $ $ \left| {{e_\omega }} \right| \lt {e_1} $ ARS $ \left| {{e_\omega }} \right| \geqslant {e_1} $ $ {{\mathrm{sgn}}} ({a_y}) = {{\mathrm{sgn}}} ({e_\omega }) $ ARS+DYC $ {{\mathrm{sgn}}} ({a_y}) \ne {{\mathrm{sgn}}} ({e_\omega }) $ 先ARS后DYC 表 3 车辆模型主要参数
Table 3. Main parameters of vehicle model
参数 数值 整车质量/kg 54048 轮距/m 2.56 1轴距质心的轴距/m 5.784 2轴距质心的轴离/m 3.384 3轴距质心的轴离/m 1.116 4轴距质心的轴离/m 3.516 5轴距质心的轴离/m 5.916 质心高度/m 1.36 轮胎半径/m 0.628 整车绕x轴的转动惯量/(kg·m2) 230700 整车绕y轴的转动惯量/(kg·m2) 852500 整车绕z轴的转动惯量/(kg·m2) 72536.8 -
[1] 毕凤荣, 孙浩轩, 张立鹏, 等. 4WID车辆主动安全控制策略研究[J]. 天津大学学报(自然科学与工程技术版), 2022, 55(2): 158-165.BI F R, SUN H X, ZHANG L P, et al. Research on the active safety control of the 4WID vehicle[J]. Journal of Tianjin University (Science and Technology), 2022, 55(2): 158-165(in Chinese). [2] 张不扬. 基于主动转向与差动制动的四轴商用车稳定性集成控制算法开发[D]. 长春: 吉林大学, 2019.ZHANG B Y. Development of integrated stability control algorithm for four-axle commercial vehicle based on active steering and differential braking[D]. Changchun: Jilin University, 2019(in Chinese). [3] AOUADJ N, HARTANI K, FATIHA M. New integrated vehicle dynamics control system based on the coordination of active front steering, direct yaw control, and electric differential for improvements in vehicle handling and stability[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2020, 4(2): 119-133. doi: 10.4271/10-04-02-0009 [4] 邓召文, 孔昕昕, 高伟. 重型半挂汽车列车主动转向控制策略研究[J]. 现代制造工程, 2021(10): 17-24.DENG Z W, KONG X X, GAO W. Research on active steering control strategy of articulated heavy vehicles[J]. Modern Manufacturing Engineering, 2021(10): 17-24(in Chinese). [5] 张为, 丁能根, 王健, 等. 汽车DYC滑模控制器设计及系统稳定性分析[J]. 北京航空航天大学学报, 2010, 36(11): 1353-1357.ZHANG W, DING N G, WANG J, et al. Vehicular DYC via SMC and system stability analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(11): 1353-1357(in Chinese). [6] 高坤明, 郭宗和, 于瑶瑶, 等. 重型车辆主动悬架的滑模控制器设计及优化[J]. 山东理工大学学报(自然科学版), 2020, 34(4): 30-36.GAO K M, GUO Z H, YU Y Y, et al. Design and optimization of sliding mode controller for active suspension of heavy vehicle[J]. Journal of Shandong University of Technology (Natural Science Edition), 2020, 34(4): 30-36(in Chinese). [7] 赵强, 解利臣. 基于主动横向稳定杆的汽车防侧倾控制策略及算法研究[J]. 重庆理工大学学报(自然科学), 2019, 33(12): 1-7.ZHAO Q, XIE L C. Research on anti-roll control strategy and algorithm of automobile based on active anti-roll bar[J]. Journal of Chongqing University of Technology (Natural Science), 2019, 33(12): 1-7(in Chinese). [8] 朱宏波. 车辆稳定性控制系统控制策略研究及验证[D]. 长春: 吉林大学, 2019.ZHU H B. Research and validation on control strategy of vehicle electronic stability control system[D]. Changchun: Jilin University, 2019(in Chinese). [9] WANG G D, LIU Y, LI S S, et al. New integrated vehicle stability control of active front steering and electronic stability control considering tire force reserve capability[J]. IEEE Transactions on Vehicular Technology, 2021, 70(3): 2181-2195. doi: 10.1109/TVT.2021.3056560 [10] 李韶华, 张志达, 周军魏. 全轮转向非线性重型车辆稳定性集成控制研究[J]. 振动与冲击, 2019, 38(9): 148-156.LI S H, ZHANG Z D, ZHOU J W. Nonlinear integrated control for maneuvering stability of a heavy-duty vehicle with all-wheel steering[J]. Journal of Vibration and Shock, 2019, 38(9): 148-156(in Chinese). [11] 孙船斌, 方琳, 童宝宏. 受饱和约束的车辆转向非线性鲁棒模糊分布控制[J]. 振动与冲击, 2022, 41(4): 77-85.SUN C B, FANG L, TONG B H. Nonlinear robust fuzzy distributed control of vehicle steering with saturation constraint[J]. Journal of Vibration and Shock, 2022, 41(4): 77-85(in Chinese). [12] 付翔, 杨凤举, 黄斌, 等. 主动后轮转向四轮独立驱动车辆的协调控制[J]. 江苏大学学报(自然科学版), 2021, 42(5): 497-505.FU X, YANG F J, HUANG B, et al. Coordinated control of active rear wheel steering and four wheel independent driving vehicle[J]. Journal of Jiangsu University (Natural Science Edition), 2021, 42(5): 497-505(in Chinese). [13] AHMADIAN N, KHOSRAVI A, SARHADI P. Integrated model reference adaptive control to coordinate active front steering and direct yaw moment control[J]. ISA Transactions, 2020, 106: 85-96. doi: 10.1016/j.isatra.2020.06.020 [14] 赵权, 李韶华, 刘欢, 等. 某特种车辆整车动力学性能分析与评价[J]. 车辆与动力技术, 2018(4): 28-32. doi: 10.3969/j.issn.1009-4687.2018.04.006ZHAO Q, LI S H, LIU H, et al. Dynamic performance analysis and evaluation of a special vehicle[J]. Vehicle & Power Technology, 2018(4): 28-32(in Chinese). doi: 10.3969/j.issn.1009-4687.2018.04.006 [15] 刘明春. 8×8轮毂电机驱动车辆操纵稳定性分析与控制研究[D]. 北京: 北京理工大学, 2015.LIU M C. Study on handling stability analysis and control for 8 in-wheel motor drive vehicle[D]. Beijing: Beijing Institute of Technology, 2015(in Chinese). [16] KIM W, YI K, LEE J. An optimal traction, braking, and steering coordination strategy for stability and manoeuvrability of a six-wheel drive and six-wheel steer vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2012, 226(1): 3-22.