留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于雷达数据挖掘的空域扇区规划方法

曹兴武 姚頔 孙樊荣 闫鑫淼

曹兴武,姚頔,孙樊荣,等. 基于雷达数据挖掘的空域扇区规划方法[J]. 北京航空航天大学学报,2023,49(12):3237-3244 doi: 10.13700/j.bh.1001-5965.2022.0573
引用本文: 曹兴武,姚頔,孙樊荣,等. 基于雷达数据挖掘的空域扇区规划方法[J]. 北京航空航天大学学报,2023,49(12):3237-3244 doi: 10.13700/j.bh.1001-5965.2022.0573
CAO X W,YAO D,SUN F R,et al. Airspace sector planning method based on radar data mining[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3237-3244 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0573
Citation: CAO X W,YAO D,SUN F R,et al. Airspace sector planning method based on radar data mining[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3237-3244 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0573

基于雷达数据挖掘的空域扇区规划方法

doi: 10.13700/j.bh.1001-5965.2022.0573
详细信息
    通讯作者:

    E-mail:sunfr@nuaa.edu.cn

  • 中图分类号: V355

Airspace sector planning method based on radar data mining

More Information
  • 摘要:

    随着民航的快速发展,机场空域越发拥挤,迫切需要提高空域扇区规划的科学性。为解决传统方法指标单一、依赖人为经验因素的问题,提出了一种基于空中交通管制的雷达原始数据,采用轨迹信息数据挖掘算法确定空域扇区的方法。根据自回归模型和拉格朗日线性插值法处理航迹数据,建立特征点筛选模型,提取航向、速度、高度航迹特征点集,利用EM聚类得到特征点区域中心,基于特征点区域中心的分布建立拓扑关系,并建立最小成本函数的谱聚类算法优化模型,提出管制空域扇区方案。通过仿真验证了所提方案的可行性。

     

  • 图 1  地速自相关图

    Figure 1.  Autocorrelation diagram of ground speed

    图 2  地速偏相关图

    Figure 2.  Partial correlation diagram of ground speed

    图 3  预处理后速度变化趋势

    Figure 3.  Speed change trend after preprocessing

    图 4  聚类数目与误差平方和的关系

    Figure 4.  Relationship between number of clusters and sum of error square

    图 5  管制区航向特征点聚类过程及结果

    Figure 5.  Clustering process and results of heading feature points in control area

    图 6  扇区划分方案

    Figure 6.  Sector division scheme

    图 7  扇区容量仿真

    Figure 7.  Sector capacity simulation

    表  1  航向特征点集合

    Table  1.   A collection heading feature points

    x/my/mz/m航空器速度/
    (km·h−1
    航向/
    rad
    爬升率/
    (m·min−1
    23852262489652736194.52−6.02
    16206560238829954244.17−2.01
    16093960078325725614.340
    下载: 导出CSV

    表  2  高度特征点集合

    Table  2.   A collection of height feature points

    x/my/mz/m航空器速度/
    (km·h−1
    航向/
    rad
    爬升率/
    (m·min−1
    −16363121646515070.14−8.06
    −77532064341024230.49−8.09
    162872021731883633.89−8.03
    下载: 导出CSV

    表  3  速度特征点集合

    Table  3.   A collection of speed feature points

    x/my/mz/m航空器速度/
    (km·h−1
    航向/
    rad
    爬升率/
    (m·min−1
    13547560425667974582.571.74
    16455156056850987762.600
    16415451254945115263.2050
    下载: 导出CSV

    表  4  特征中心点坐标

    Table  4.   Coordinates of feature center point

    类别坐标/(°)
    航向特征点E102.9,N25.1
    航向特征点E103.4, N25.8
    航向特征点E102.1, N24.4
    航向特征点E103.3, N24.6
    速度特征点E102.8, N25.0
    速度特征点E103.1, N25.3
    速度特征点E102.1, N24.5
    速度特征点E103.5, N25.9
    速度特征点E103.6, N24.6
    高度特征点E102.8, N24.9
    高度特征点E103.6, N25.5
    高度特征点E103.7, N24.5
    高度特征点E103.1, N25.6
    高度特征点E102.2, N24.8
    高度特征点E103.2, N24.8
    下载: 导出CSV

    表  5  节点复杂度和位置

    Table  5.   Node complexity and location

    节点编号横坐标/km纵坐标/km复杂度类别
    1−4.643.1940航向特征点
    24.73823航向特征点
    3−8.76−6.6156航向特征点
    43.9−5.1219航向特征点
    5−1.88−9.0126速度特征点
    61362.224速度特征点
    7−8.85−6.2445速度特征点
    85.719.9247速度特征点
    96.27−5.8016速度特征点
    10−1.77−4.6823高度特征点
    116.938.315高度特征点
    128.5−6.2424高度特征点
    131.234.9030高度特征点
    14−7.32−3.3541高度特征点
    151.09−3.6132高度特征点
    1681.0340冲突点
     注:以昆明长水国际机场跑道口中心点为基准建立直角坐标系。
    下载: 导出CSV

    表  6  拓扑关系

    Table  6.   Topological relationship

    节点编号邻接矩阵元素值
    12345678910111213141516
    1000000.40.020.020.040.490.020.020.150.070.200.05
    2000000.10.010.410.080.020.420.060.20.030.020.07
    3000000.010.780.010.010.040.010.010.010.30.030.01
    4000000.070.010.010.360.080.010.160.030.020.310.8
    5000000.160.050.010.040.780.010.020.10.120.150.03
    60.400.10.010.070.1600000.240.060.020.390.030.130.1
    70.020.010.780.010.0500000.040.010.010.010.320.030.01
    80.020.420.010.010.0100000.010.490.010.10.010.010.04
    90.040.080.010.360.0400000.040.010.400.020.010.120.09
    100.490.020.040.080.760.240.040.010.040000000.03
    110.020.410.010.010.010.060.010.490.010000000.08
    120.020.060.010.160.020.020.010.010.400000000.08
    130.150.20.010.030.10.390.010.10.020000000.07
    140.070.030.30.020.120.030.320.010.010000000.01
    150.200.020.030.310.150.130.030.010.120000000.06
    160.050.070.010.080.030.10.010.040.090.030.080.080.070.010.060
    下载: 导出CSV

    表  7  扇区划分结果工作负荷值

    Table  7.   Workload values based on sector division results

    扇区节点集合扇区高峰流量/架次扇区复杂度
    西扇区1,5,6,1412131
    南扇区3,7,1020124
    东扇区4,9,12,155115
    北扇区2,8,11,13,1614131
    下载: 导出CSV
  • [1] MITCHELL J, SABHNANI G, HOFFMAN R, et al. Dynamic airspace configuration management based on computational geometry techniques: AIAA 2008-7225[R]. Reston: AIAA, 2008.
    [2] KICINGER R, YOUSEFI A. Heuristic method for 3D airspace partitioning: Genetic algorithm and agent-based approach: AIAA 2009-7058[R]. Reston: AIAA, 2009.
    [3] LI J, WANG T, HWANG I. A spectral clustering based algorithm for dynamic airspace configuration: AIAA 2009-7056[R]. Reston: AIAA, 2009.
    [4] 亢继方. 空域复杂性因素下的扇区划分研究[D]. 南京: 南京航空航天大学, 2016.

    KANG J F. Research on sector division under airspace complexity factors[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016(in Chinese).
    [5] 毕虹. 基于空域信息的动态扇区划分方法研究[D]. 北京: 北京工业大学, 2013.

    BI H. Dynamic airspace sectorization via airspace information[D]. Beijing: Beijing University of Technology, 2013(in Chinese).
    [6] 尹文杰. 空域灵活使用中空域动态规划及流量动态分配技术研究[D]. 天津: 中国民航大学, 2014.

    YIN W J. Research on airspace dynamic programming and dynamic allocation of flow technique in the flexible use of airspace[D]. Tianjin: Civil Aviation University of China, 2014(in Chinese).
    [7] GERDES I, TEMME A, SCHULTZ M. Dynamic airspace sectorisation for flight-centric operations[J]. Transportation Research Part C:Emerging Technologies, 2018, 95: 460-480. doi: 10.1016/j.trc.2018.07.032
    [8] 张文倩, 王瑛, 李超, 等. 飞行流量变化下的动态扇区划分研究[J]. 火力与指挥控制, 2019, 44(1): 125-130. doi: 10.3969/j.issn.1002-0640.2019.01.025

    ZHANG W Q, WANG Y, LI C, et al. Research on dynamic sector partitioningunder change of flight flow[J]. Fire Control & Command Control, 2019, 44(1): 125-130(in Chinese). doi: 10.3969/j.issn.1002-0640.2019.01.025
    [9] REHM F. Clustering of flight tracks[C]//Proceedings of the AIAA Infotech @Aerospace Conference. Reston: AIAA, 2010: 155-164.
    [10] GARIEL M, SRIVASTAVA A N, FERON E. Trajectory clustering and an application to airspace monitoring[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1511-1524. doi: 10.1109/TITS.2011.2160628
    [11] LEIDEN K, ATKINS S. Trajectory clustering for metroplex operations: AIAA 2011-7066[R]. Reston: AIAA, 2011.
    [12] 刘继新, 董欣放, 徐晨, 等. 基于密度峰值的终端区航迹聚类与异常识别[J]. 交通运输工程学报, 2021, 21(5): 214-226.

    LIU J X, DONG X F, XU C, et al. Aircraft trajectory clustering in terminal area and anomaly recognition based on density peak[J]. Traffic and Transportation Engineering, 2021, 21(5): 214-226(in Chinese).
    [13] 马天林, 韩壮志. 基于线性预测的雷达航迹压缩算法[J]. 火力与指挥控制, 2019, 44(8): 107-110.

    MA T L, HAN Z Z. Research on radar track compression algorithm based on linear prediction[J]. Fire Control & Command Control, 2019, 44(8): 107-110(in Chinese).
    [14] 王莉莉, 彭勃. 基于特征航迹简化模型的中心航迹提取研究[J]. 计算机应用研究, 2019, 36(1): 49-52.

    WANG L L, PENG B. Research on central flight track extraction based on simplified track model[J]. Application Research of Computers, 2019, 36(1): 49-52(in Chinese).
    [15] DONG X F, LIU J X, ZHANG W N, et al. Identifying anomaly aircraft trajectories in terminal areas based on deep auto-encoder and its application in trajectory clustering[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2020, 37(4): 574-585.
    [16] 郑乐, 隋东, 张军峰, 等. 基于转弯点聚类的航空器飞行轨迹分析[J]. 武汉理工大学学报(交通科学与工程版), 2015, 39(1): 139-143.

    ZHENG L, SUI D, ZHANG J F, et al. Analysis of the aircraft flight path based on turning points clustering[J] Journal of Wuhan University of Technology (Transportation Science & Engineering), 2015, 39(1): 139-143(in Chinese).
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  354
  • HTML全文浏览量:  95
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30
  • 录用日期:  2022-08-12
  • 网络出版日期:  2022-09-13
  • 整期出版日期:  2023-12-29

目录

    /

    返回文章
    返回
    常见问答