留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于RCJAYA算法的太阳电池参数辨识

欧阳城添 黄祖威 刘裕嘉 张林 朱东林 周昌军

欧阳城添,黄祖威,刘裕嘉,等. 基于RCJAYA算法的太阳电池参数辨识[J]. 北京航空航天大学学报,2024,50(7):2133-2140 doi: 10.13700/j.bh.1001-5965.2022.0576
引用本文: 欧阳城添,黄祖威,刘裕嘉,等. 基于RCJAYA算法的太阳电池参数辨识[J]. 北京航空航天大学学报,2024,50(7):2133-2140 doi: 10.13700/j.bh.1001-5965.2022.0576
OUYANG C T,HUANG Z W,LIU Y J,et al. Parameter identification of solar cell model based on RCJAYA algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2133-2140 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0576
Citation: OUYANG C T,HUANG Z W,LIU Y J,et al. Parameter identification of solar cell model based on RCJAYA algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2133-2140 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0576

基于RCJAYA算法的太阳电池参数辨识

doi: 10.13700/j.bh.1001-5965.2022.0576
基金项目: 国家自然科学基金(61561024,62002046,62006106);浙江省自然科学基金(LQ21F02005);浙江省基础公益研究计划(LGG18E050011)
详细信息
    通讯作者:

    E-mail:993291500@qq.com

  • 中图分类号: TP301.6

Parameter identification of solar cell model based on RCJAYA algorithm

Funds: National Natural Science Foundation of China (61561024,62002046,62006106); Zhejiang Provincial Natural Science Foundation of China (LQ21F02005); Basic Public Welfare Research Program of Zhejiang Province (LGG18E050011)
More Information
  • 摘要:

    为提升智能优化算法辨识太阳电池参数的精度和准确度,提出一种基于排序概率量化机制和混沌扰动JAYA算法(RCJAYA)的辨识方法。RCJAYA算法根据排序概率选择不同方式对个体进行更新,以平衡局部和全局搜索能力,保持种群多样性;对最优个体进行混沌扰动,发掘更优解替代最差解,提升种群质量;采用替换策略更新陷入停滞的个体,提升算法性能。通过RCJAYA算法辨识参数得到的太阳电池单、双二极管的电流均方根误差最优值分别为9.8602×10−4 A、9.8258×10−4 A,与JAYA等5种算法对比,结果表明,RCJAYA算法更具优势。根据辨识结果计算出模拟电流,与实测电流进行比对,在单、双二极管上的平均误差分别为0.00084 A、0.00082 A,表明RCJAYA算法辨识的参数值准确可靠。

     

  • 图 1  单二极管模型等效电路[14]

    Figure 1.  Equivalent circuit of single diode model[14]

    图 2  双二极管模型等效电路[15]

    Figure 2.  Equivalent circuit of double diode model[15]

    图 3  RCJAYA算法流程

    Figure 3.  RCJAYA algorithm flow

    图 5  单二极管模型的RCJAYA 模拟数据和实测数据比较

    Figure 5.  Comparison of measured data and simulated data of RCJAYA for single diode model

    图 6  双二极管模型的RCJAYA 模拟数据和实测数据比较

    Figure 6.  Comparison of measured data and simulated data of RCJAYA for double diode model

    图 4  RCJAYA算法单、双二极管模型电流误差值比较

    Figure 4.  Comparison of current error value of RCJAYA algorithm single and double diode model

    表  1  单、双二极管模型待辨识参数范围

    Table  1.   Range of parameters to be identified for single and double diode models

    参数 下界 上界
    $ {I}_{\mathrm{p}\mathrm{h}}/\mathrm{A} $ 0 1
    $ {I}_{\mathrm{s}\mathrm{d}},{I}_{\mathrm{s}\mathrm{d}1},{I}_{\mathrm{s}\mathrm{d}2}/ {\mu }\mathrm{A} $ 0 1
    $ {R}_{\mathrm{S}} $/Ω 0 0.5
    $ {R}_{\mathrm{s}\mathrm{h}} $/Ω 0 100
    $ n,{n}_{1},{n}_{2} $ 1 2
    下载: 导出CSV

    表  2  单二极管参数辨识电流RMSE值统计结果

    Table  2.   Statistical results of current RMSE values for single diode parameter identification A

    算法 最优值 最差值 平均值 标准差
    RCJAYA 9.8602×10−4 9.8602×10−4 9.8602×10−4 1.0598×10−13
    JAYA[9] 9.8946×10−4 1.4783×10−3 1.1617×10−3 1.8796×10−4
    IJAYA[14] 9.8603×10−4 1.0622×10−3 9.9204×10−4 1.4033×10−5
    PGJAYA[17] 9.8602×10−4 9.8603×10−4 9.8602×10−4 1.4485×10−9
    STLBO[16] 9.8602×10−4 9.8655×10−4 9.8607×10−4 1.8602×10−5
    GWOCS[21] 9.8607×10−4 9.9095×10−4 9.8874×10−4 2.4696×10−6
    下载: 导出CSV

    表  3  双二极管参数辨识电流RMSE值统计结果

    Table  3.   Statistical results of current RMSE values for double diode parameter identification A

    算法 最优值 最差值 平均值 标准差
    RCJAYA 9.8258×10−4 9.8909×10−4 9.8557×10−4 1.3743×10−6
    JAYA[9] 9.8934×10−4 1.4793×10−3 1.1767×10−3 1.9356×10−4
    IJAYA[14] 9.8293×10−4 1.4055×10−3 1.0269×10−3 9.8325×10−5
    PGJAYA[17] 9.8263×10−4 9.9499×10−4 9.8582×10−4 2.5375×10−6
    STLBO[16] 9.8252×10−4 2.4480×10−3 1.0585×10−3 2.8978×10−4
    GWOCS[21] 9.8334×10−4 1.0017×10−3 9.9411×10−4 9.5937×10−6
    下载: 导出CSV

    表  4  各算法单二极管模型最佳辨识参数

    Table  4.   Optimal identification parameters of single diode model for each algorithm

    算法 $ {I}_{\mathrm{p}\mathrm{h}}/\mathrm{A} $ $ {I}_{\mathrm{s}\mathrm{d}}/ \mu \mathrm{A} $ $ {R}_{\mathrm{S}} $/Ω $ {R}_{\mathrm{s}\mathrm{h}} $/Ω $ n $ $ {{X}}_{\mathrm{R}\mathrm{M}\mathrm{S}\mathrm{E}} $/A
    RCJAYA 0.7608 0.3230 0.0364 53.7188 1.4812 9.8602×10−4
    JAYA[9] 0.7608 0.3281 0.0364 54.9298 1.4828 9.8946×10−4
    IJAYA[14] 0.7608 0.3228 0.0364 53.7595 1.4811 9.8603×10−4
    PGJAYA[17] 0.7608 0.3230 0.0364 53.7185 1.4812 9.8602×10−4
    STLBO[16] 0.7608 0.3230 0.0364 53.7184 1.4812 9.8602×10−4
    GWOCS[21] 0.7608 0.3219 0.0364 53.6320 1.4808 9.8607×10−4
    下载: 导出CSV

    表  5  各算法双二极管模型最佳辨识参数

    Table  5.   Optimal identification parameters of double diode model for each algorithm

    算法 $ {I}_{\mathrm{p}\mathrm{h}}/\mathrm{A} $ $ {I}_{\mathrm{s}\mathrm{d}1}/ \mu \mathrm{A} $ $ {R}_{\mathrm{S}} $/Ω $ {R}_{\mathrm{s}\mathrm{h}} $/Ω $ {n}_{1} $ $ {I}_{\mathrm{s}\mathrm{d}2}/ \mu \mathrm{A} $ $ {n}_{2} $ $ { {X}}_{\mathrm{R}\mathrm{M}\mathrm{S}\mathrm{E}} $/A
    RCJAYA 0.7608 0.6333 0.0367 55.2141 2.0000 0.2399 1.4560 9.8258×10−4
    JAYA[9] 0.7607 0.0061 0.0364 52.6575 1.8436 0.3151 1.4788 9.8934×10−4
    IJAYA[14] 0.7061 0.0051 0.0376 77.8519 1.2186 0.7509 1.6247 9.8293×10−4
    PGJAYA[17] 0.7608 0.2103 0.0368 55.8135 1.4450 0.8853 2.0000 9.8263×10−4
    STLBO[16] 0.7608 0.2336 0.0367 55.3382 1.4538 0.6849 2.0000 9.8252×10−4
    GWOCS[21] 0.7608 0.5377 0.0367 54.7331 2.0000 0.2486 1.4588 9.8334×10−4
    下载: 导出CSV

    表  6  RCJAYA算法获得的单、双二极管模型的电压、电流和误差的计算值

    Table  6.   Calculated values of voltage, current and error obtained by RCJAYA for single and double diode model

    编号 $ {V}_{\mathrm{L}}/\mathrm{V} $ $ {I}_{\mathrm{L}}/\mathrm{A} $ $ {I}_{\mathrm{s}\mathrm{i}\mathrm{m}-\mathrm{S}}/\mathrm{A} $ $ {I}_{\mathrm{s}\mathrm{i}\mathrm{m}-\mathrm{D}}/\mathrm{A} $ $ {I}_{\mathrm{I}\mathrm{A}\mathrm{E}-\mathrm{S}} $/A $ {I}_{\mathrm{I}\mathrm{A}\mathrm{E}-\mathrm{D}} $/A
    1 −0.2057 0.7640 0.76411183 0.76399868 0.00011183 0.00000132
    2 −0.1291 0.7620 0.76268722 0.76261260 0.00068722 0.00061260
    3 −0.0588 0.7605 0.76137945 0.76134002 0.00087945 0.00084002
    4 0.0057 0.7605 0.76017814 0.76017052 0.00032186 0.00032948
    5 0.0646 0.7600 0.75907936 0.75909955 0.00092064 0.00090045
    6 0.1185 0.7590 0.75806650 0.75810936 0.00093350 0.00089064
    7 0.1678 0.7570 0.75711580 0.75717399 0.00011580 0.00017399
    8 0.2132 0.7570 0.75616549 0.75622840 0.00083451 0.00077160
    9 0.2545 0.7555 0.75511092 0.75516422 0.00038908 0.00033578
    10 0.2924 0.7540 0.75368773 0.75371456 0.00031227 0.00028544
    11 0.3269 0.7505 0.75141438 0.75139946 0.00091438 0.00089946
    12 0.3585 0.7465 0.74737639 0.74731136 0.00087639 0.00081136
    13 0.3873 0.7385 0.74013817 0.74002886 0.00163817 0.00152886
    14 0.4137 0.7280 0.72740044 0.72726898 0.00059956 0.00073102
    15 0.4373 0.7065 0.70698699 0.70686916 0.00048699 0.00036916
    16 0.4590 0.6755 0.67528950 0.67521975 0.00021050 0.00028025
    17 0.4784 0.6320 0.63076274 0.63075753 0.00123726 0.00124247
    18 0.4960 0.5730 0.57193024 0.57198108 0.00106976 0.00101892
    19 0.5119 0.4990 0.49961177 0.49968789 0.00061177 0.00068789
    20 0.5265 0.4130 0.41366500 0.41371920 0.00066500 0.00071920
    21 0.5398 0.3165 0.31754974 0.31754137 0.00104974 0.00104137
    22 0.5521 0.2120 0.21223258 0.21213072 0.00023258 0.00013072
    23 0.5633 0.1035 0.10238239 0.10218079 0.00111761 0.00131921
    24 0.5736 −0.0100 −0.00851637 −0.00877755 0.00148363 0.00122245
    25 0.5833 −0.1230 −0.12521967 −0.12553766 0.00221967 0.00253766
    26 0.5900 −0.2100 −0.20810980 −0.20839172 0.00189020 0.00160828
     注:$ {I}_{\mathrm{I}\mathrm{A}\mathrm{E}-\mathrm{S}} $平均误差为0.00083882 A,$ {I}_{\mathrm{I}\mathrm{A}\mathrm{E}-\mathrm{D}} $平均误差为0.00081883 A。
    下载: 导出CSV
  • [1] ALSKAIF T, DEV S, VISSER L, et al. A systematic analysis of meteorological variables for PV output power estimation[J]. Renewable Energy, 2020, 153: 12-22. doi: 10.1016/j.renene.2020.01.150
    [2] ELKHOLY A, ABOU EL-ELA A A. Optimal parameters estimation and modelling of photovoltaic modules using analytical method[J]. Heliyon, 2019, 5(7): e02137. doi: 10.1016/j.heliyon.2019.e02137
    [3] 孙以泽, 彭乐乐, 孟婥, 等. 基于Lambert W函数的太阳电池组件参数提取及优化[J]. 太阳能学报, 2014, 35(8): 1429-1434. doi: 10.3969/j.issn.0254-0096.2014.08.019

    SUN Y Z, PENG L L, MENG Z, et al. Parameters extraction and optimization for PV module based on Lambert W function[J]. Acta Energiae Solaris Sinica, 2014, 35(8): 1429-1434(in Chinese). doi: 10.3969/j.issn.0254-0096.2014.08.019
    [4] 吴忠强, 于丹琦, 康晓华. 基于改进蚁狮优化算法的太阳电池模型参数辨识[J]. 太阳能学报, 2019, 40(12): 3435-3443.

    WU Z Q, YU D Q, KANG X H. Parameter identification of solar cell model based on improved ant lion algorithm[J]. Acta Energiae Solaris Sinica, 2019, 40(12): 3435-3443(in Chinese).
    [5] KUMARI P A, GEETHANJALI P. Adaptive genetic algorithm based multi-objective optimization for photovoltaic cell design parameter extraction[J]. Energy Procedia, 2017, 117: 432-441. doi: 10.1016/j.egypro.2017.05.165
    [6] CHOPDE A, MAGARE D, PATIL M, et al. Parameter extraction for dynamic PV thermal model using particle swarm optimization[J]. Applied Thermal Engineering, 2016, 100: 508-517. doi: 10.1016/j.applthermaleng.2016.01.164
    [7] BISWAS P P, SUGANTHAN P N, WU G H, et al. Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm[J]. Renewable Energy, 2019, 132: 425-438. doi: 10.1016/j.renene.2018.07.152
    [8] 简献忠, 翁志远, 王如志. CIJAYA算法在光伏组件参数辨识中的应用[J]. 太阳能学报, 2021, 42(11): 19-26.

    JIAN X Z, WENG Z Y, WANG R Z. CIJAYA algorithm for parameters identification of photovoltaic module model[J]. Acta Energiae Solaris Sinica, 2021, 42(11): 19-26(in Chinese).
    [9] RAO R. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems[J]. International Journal of Industrial Engineering Computations, 2016, 7: 19-34.
    [10] 曾一婕, 王龙, 黄超. 基于Jaya-DA算法的太阳电池模型参数辨识[J]. 太阳能学报, 2022, 43(2): 198-202.

    ZENG Y J, WANG L, HUANG C. Parameter identification of solar cell model based on Jaya-DA algorithm[J]. Acta Energiae Solaris Sinica, 2022, 43(2): 198-202(in Chinese).
    [11] ZHANG Y Y, MA M D, JIN Z G. Comprehensive learning Jaya algorithm for parameter extraction of photovoltaic models[J]. Energy, 2020, 211: 118644. doi: 10.1016/j.energy.2020.118644
    [12] JIAN X Z, WENG Z Y. A logistic chaotic JAYA algorithm for parameters identification of photovoltaic cell and module models[J]. Optik, 2020, 203: 164041. doi: 10.1016/j.ijleo.2019.164041
    [13] YANG X, GONG W Y. Opposition-based JAYA with population reduction for parameter estimation of photovoltaic solar cells and modules[J]. Applied Soft Computing, 2021, 104: 107218. doi: 10.1016/j.asoc.2021.107218
    [14] YU K J, LIANG J J, QU B Y, et al. Parameters identification of photovoltaic models using an improved JAYA optimization algorithm[J]. Energy Conversion and Management, 2017, 150: 742-753. doi: 10.1016/j.enconman.2017.08.063
    [15] CHEN X, YU K J, DU W L, et al. Parameters identification of solar cell models using generalized oppositional teaching learning based optimization[J]. Energy, 2016, 99: 170-180. doi: 10.1016/j.energy.2016.01.052
    [16] NIU Q, ZHANG H Y, LI K. An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models[J]. International Journal of Hydrogen Energy, 2014, 39(8): 3837-3854. doi: 10.1016/j.ijhydene.2013.12.110
    [17] YU K J, QU B Y, YUE C T, et al. A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module[J]. Applied Energy, 2019, 237: 241-257. doi: 10.1016/j.apenergy.2019.01.008
    [18] YU K J, WANG X, WANG Z L. An improved teaching-learning-based optimization algorithm for numerical and engineering optimization problems[J]. Journal of Intelligent Manufacturing, 2016, 27(4): 831-843. doi: 10.1007/s10845-014-0918-3
    [19] WEI J M, NIU H Y. A ranking-based adaptive cuckoo search algorithm for unconstrained optimization[J]. Expert Systems with Applications, 2022, 204: 117428. doi: 10.1016/j.eswa.2022.117428
    [20] EASWARAKHANTHAN T, BOTTIN J, BOUHOUCH I, et al. Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers[J]. International Journal of Solar Energy, 1986, 4(1): 1-12. doi: 10.1080/01425918608909835
    [21] LONG W, CAI S H, JIAO J J, et al. A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models[J]. Energy Conversion and Management, 2020, 203: 112243. doi: 10.1016/j.enconman.2019.112243
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  8
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-05
  • 录用日期:  2022-12-03
  • 网络出版日期:  2023-01-09
  • 整期出版日期:  2024-07-18

目录

    /

    返回文章
    返回
    常见问答