留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于图注意力机制的威胁情报归因方法

王婷 严寒冰 郎波

王婷,严寒冰,郎波. 一种基于图注意力机制的威胁情报归因方法[J]. 北京航空航天大学学报,2024,50(7):2293-2303 doi: 10.13700/j.bh.1001-5965.2022.0590
引用本文: 王婷,严寒冰,郎波. 一种基于图注意力机制的威胁情报归因方法[J]. 北京航空航天大学学报,2024,50(7):2293-2303 doi: 10.13700/j.bh.1001-5965.2022.0590
WANG T,YAN H B,LANG B. Threat intelligence attribution method based on graph attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2293-2303 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0590
Citation: WANG T,YAN H B,LANG B. Threat intelligence attribution method based on graph attention mechanism[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2293-2303 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0590

一种基于图注意力机制的威胁情报归因方法

doi: 10.13700/j.bh.1001-5965.2022.0590
基金项目: 国家重点研发计划(2019QY1400)
详细信息
    通讯作者:

    E-mail:yhb@cert.org.cn

  • 中图分类号: TP391

Threat intelligence attribution method based on graph attention mechanism

Funds: National Key Research and Development Program of China (2019QY1400)
More Information
  • 摘要:

    威胁情报关联分析已成为网络攻击溯源的有效方式。从公开威胁情报源爬取了不同高级持续性威胁(APT)组织的威胁情报分析报告,并提出一种基于图注意力机制的威胁情报报告归类的方法,目的是检测新产生的威胁情报分析报告类别是否为已知的攻击组织,从而有助于进一步的专家分析。通过设计威胁情报知识图谱,提取战术和技术情报,对恶意样本、IP和域名进行属性挖掘,构建复杂网络,使用图注意力神经网络进行威胁情报报告节点分类。评估表明:所提方法在考虑类别分布不均衡的情况下,可以达到78%的准确率,达到对威胁情报报告所属组织进行有效判定的目的。

     

  • 图 1  本文方法工作流程

    Figure 1.  Workflow of the proposed method

    图 2  威胁情报知识图谱结构

    Figure 2.  Threat intelligence knowledge graph structure

    图 3  TRAM工具使用样例

    Figure 3.  Application example of TRAM tool

    图 4  威胁情报异构网络映射为同构网络

    Figure 4.  Heterogeneous threat intelligence networks mapped to homogeneous networks

    图 5  图注意力机制消息聚合示意图

    Figure 5.  Schematic diagram of message aggregation of graph attention mechanism

    图 6  同构图注意力机制模型

    Figure 6.  Homogeneous graph attention mechanism model

    图 7  FireEye发布的与APT32相关的威胁情报报告示例

    Figure 7.  Example of threat intelligence report related to APT32 released by FireEye

    图 8  威胁情报实体数量

    Figure 8.  Statistics of threat intelligence entities

    图 9  威胁情报关系数量

    Figure 9.  Statistics of threat intelligence relations

    图 10  APT攻击组织分析报告统计

    Figure 10.  Statistics of APT organization analysis report

    图 11  多头注意力机制准确率

    Figure 11.  Accuracy of multi-head attention mechanisms

    表  1  部分IOC正则表达式

    Table  1.   Some examples of IOC regular expressions

    实体类型 正则表达式
    MD5 [a-f 0-9]{32}|[A-F 0-9]{32}
    SHA1 [a-f 0-9]{40}|[A-F 0-9]{40}
    SHA256 [a-f0-9]{64}|[A-F0-9]{64}
    CVE CVE-[0-9]{4}-[0-9]{4,6}
    IP ((25[0-5]|2[0-4]\d|((1\d{2})|([1-9]?\d)))\.){3}
    (25[0-5]|2[0-4]\d|((1\d{2})|([1-9]?\d)))
    Domain [a-zA-Z0-9][-a-zA-Z0-9]{0,62}\.+?)([a-zA-Z][-a-zA-Z]{0,62}
    下载: 导出CSV

    表  2  APT部分组织别名

    Table  2.   APT part organization aliases

    APT组织 别名
    Sofacy APT28, PawnStorm, PawnStorm, FancyBear,Sednit, SNAKEMACKEREL, TsarTeam, TsarTeam, TG-4127, Group-4127, STRONTIUM, TAG_0700, Swallowtail,IRONTWILIGHT, Group74, SIG40, GrizzlySteppe, apt_sofacy
    BITTER T-APT-17, APT-C-08, 蔓灵花
    APT32
    海莲花、OceanLotusGroup, OceanLotus, CobaltKitty, APT-C-00, SeaLotus, SeaLotus, APT-32, OceanBuffalo, PONDLOACH, TINWOODLAWN
    Confucius 孔夫子
    SideWinder 响尾蛇
    下载: 导出CSV

    表  3  本文使用的威胁情报源

    Table  3.   Threat intelligence sources used in this paper

    威胁情报源 厂商名称
    国内安全厂商 绿盟,奇安信,360,微步在线,安天
    国外安全厂商 MITRE ATT&CK,CheckPoint,CrowdStrike,Microsoft,Trend Micro,Symantec,FireEye,Kaspersky,Welivesecurity, Malwarebytes, Mandiant,Ahnlab,VirusTotal
    Github开源项目 APTnotes
    下载: 导出CSV

    表  4  模型超参数设置

    Table  4.   Super parameter settings of model

    参数 数值
    seed 72
    weight_decay 5×104
    nb_head 32
    α 0.2
    lr 0.005
    hidden 8
    dropout 0.3
    patience 200
    下载: 导出CSV

    表  5  性能评估指标

    Table  5.   Performance evaluation indicators

    组织 P R F1 报告数量
    APT29 0.70 0.89 0.78 18
    APT32 0.80 0.67 0.73 24
    APT33 0.20 0.25 0.22 4
    APT34 0.90 0.76 0.83 25
    APT37 0.75 0.60 0.67 5
    BITTER 0.57 0.50 0.53 8
    Cobalt 1.00 0.33 0.50 6
    Confucius 0.90 0.82 0.86 11
    DarkHotel 0.15 0.67 0.25 3
    FIN6 0.60 0.75 0.67 4
    FIN7 0.57 0.50 0.53 16
    Kimsuky 0.29 0.20 0.24 10
    Lazarus 0.77 0.90 0.83 106
    MuddyWater 0.88 0.84 0.86 45
    ProjectSauron 0.80 0.80 0.80 10
    Shammon 1.00 0.75 0.86 8
    SideWinder 0.67 0.50 0.57 8
    Sofacy 0.84 0.90 0.87 41
    StrongPity 1.00 0.85 0.92 46
    TeamTNT 1.00 0.14 0.25 7
    PROMETHIUM 0.83 1.00 0.91 5
    TA505 0.79 0.82 0.81 33
    Accuracy 0.78 443
    Macro avg 0.73 0.66 0.66 443
    Micro avg 0.78 0.78 0.78 443
    Weighted avg 0.80 0.78 0.78 443
    下载: 导出CSV

    表  6  方法对比

    Table  6.   Methods comparison

    方法PRF1
    GCN0.7440.7440.744
    GraphSage0.7520.7480.749
    GAT0.7800.7800.780
    下载: 导出CSV
  • [1] 尹彦, 张红斌, 刘滨, 等. 网络安全态势感知中的威胁情报技术[J]. 河北科技大学学报, 2021, 42(2): 195-204. doi: 10.7535/hbkd.2021yx02012

    YIN Y, ZHANG H B, LIU B, et al. Threat intelligence technology in network security situation awareness[J]. Journal of Hebei University of Science and Technology, 2021, 42(2): 195-204(in Chinese). doi: 10.7535/hbkd.2021yx02012
    [2] 王淮, 杨天长. 网络威胁情报关联分析技术[J]. 信息技术, 2021, 45(2): 26-32.

    WANG H, YANG T C. Network threat intelligence correlation analysis technology[J]. Information Technology, 2021, 45(2): 26-32(in Chinese).
    [3] 赵宁, 李蕾, 刘青春, 等. 基于网络开源情报的威胁情报分析与管理[J]. 情报杂志, 2021, 40(11): 16-22. doi: 10.3969/j.issn.1002-1965.2021.11.003

    ZHAO N, LI L, LIU Q C, et al. Analysis and management of threat intelligence based on OSINT[J]. Journal of Intelligence, 2021, 40(11): 16-22(in Chinese). doi: 10.3969/j.issn.1002-1965.2021.11.003
    [4] 党超辉, 马志伟, 邵国飞, 等. 基于大数据与威胁情报的防御体系研究[J]. 计算机与网络, 2021, 47(15): 46-47. doi: 10.3969/j.issn.1008-1739.2021.15.043

    DANG C H, MA Z W, SHAO G F, et al. Research on defense system based on big data and threat intelligence[J]. Computer & Network, 2021, 47(15): 46-47(in Chinese). doi: 10.3969/j.issn.1008-1739.2021.15.043
    [5] 何志鹏, 刘鹏, 王鹤. 网络威胁情报标准化建设分析[J]. 信息安全研究, 2021, 7(6): 503-511. doi: 10.3969/j.issn.2096-1057.2021.06.004

    HE Z P, LIU P, WANG H. Analysis on standardization construction of cyber threat intelligence[J]. Journal of Information Security Research, 2021, 7(6): 503-511(in Chinese). doi: 10.3969/j.issn.2096-1057.2021.06.004
    [6] 张红斌, 尹彦, 赵冬梅, 等. 基于威胁情报的网络安全态势感知模型[J]. 通信学报, 2021, 42(6): 182-194.

    ZHANG H B, YIN Y, ZHAO D M, et al. Network security situational awareness model based on threat intelligence[J]. Journal on Communications, 2021, 42(6): 182-194(in Chinese).
    [7] 赵阳. 绿盟威胁情报解决方案[J]. 信息安全与通信保密, 2020, 18(S1): 23-28. doi: 10.3969/j.issn.1009-8054.2020.z1.006

    ZHAO Y. Green alliance threat intelligence solution[J]. Information Security and Communications Privacy, 2020, 18(S1): 23-28(in Chinese). doi: 10.3969/j.issn.1009-8054.2020.z1.006
    [8] VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. (2017-10-30)[2022-07-12]. http://arxiv.org/abs/1710.10903.
    [9] 黄克振, 连一峰, 冯登国, 等. 一种基于图模型的网络攻击溯源方法[J]. 软件学报, 2022, 33(2): 683-698.

    HUANG K Z, LIAN Y F, FENG D G, et al. Method of cyber attack attribution based on graph model[J]. Journal of Software, 2022, 33(2): 683-698(in Chinese).
    [10] 蔡扬. 基于网络行为分析的单机木马检测技术的研究与实现[D]. 杭州: 浙江大学, 2016.

    CAI Y. Research and implementation of Trojan detection technology base on network behavior analysis[D]. Hangzhou: Zhejiang University, 2016(in Chinese).
    [11] PERRY L, SHAPIRA B, PUZIS R. NO-DOUBT: Attack attribution based on threat intelligence reports[C]//Proceedings of the IEEE International Conference on Intelligence and Security Informatics. Piscataway: IEEE Press, 2019: 80-85.
    [12] NAVEEN S, PUZIS R, ANGAPPAN K. Deep learning for threat actor attribution from threat reports[C]//Proceedings of the International Conference on Computer, Communication and Signal Processing. Piscataway: IEEE Press, 2020: 1-6.
    [13] 丁兆云, 刘凯, 刘斌, 等. 网络安全知识图谱研究综述[J]. 华中科技大学学报(自然科学版), 2021, 49(7): 79-91.

    DING Z Y, LIU K, LIU B, et al. Survey of cyber security knowledge graph[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2021, 49(7): 79-91(in Chinese).
    [14] 杨沛安, 刘宝旭, 杜翔宇. 面向攻击识别的威胁情报画像分析[J]. 计算机工程, 2020, 46(1): 136-143.

    YANG P A, LIU B X, DU X Y. Portrait analysis of threat intelligence for attack recognition[J]. Computer Engineering, 2020, 46(1): 136-143(in Chinese).
    [15] 李序, 连一峰, 张海霞, 等. 网络安全知识图谱关键技术[J]. 数据与计算发展前沿, 2021, 3(3): 9-18.

    LI X, LIAN Y F, ZHANG H X, et al. Key technologies of cyber security knowledge graph[J]. Frontiers of Data & Computing, 2021, 3(3): 9-18(in Chinese).
    [16] 刘强, 祝鹏程. 基于联合学习的端到端威胁情报知识图谱构建方法[J]. 现代计算机, 2021(16): 16-21. doi: 10.3969/j.issn.1007-1423.2021.16.004

    LIU Q, ZHU P C. End-to-end threat intelligence knowledge graph construction method based on joint learning[J]. Modern Computer, 2021(16): 16-21(in Chinese). doi: 10.3969/j.issn.1007-1423.2021.16.004
    [17] 李涛. 威胁情报知识图谱构建与应用关键技术研究[D]. 郑州: 战略支援部队信息工程大学, 2020: 21-74.

    LI T. Research on key technologies for construction and application of threat intelligence knowledge graph[D]. Zhengzhou: Information Engineering University, 2020: 21-74(in Chinese).
    [18] 王一琁. 基于知识图谱的网络安全态势感知技术研究与实现[D]. 成都: 电子科技大学, 2020: 18-68.

    WANG Y Q. Research and implementation of NSSA technology based on knowledge graph[D]. Chengdu: University of Electronic Science and Technology of China, 2020: 18-68(in Chinese).
    [19] LU X F, ZHOU X, WANG W T, et al. Domain-oriented topic discovery based on features extraction and topic clustering[J]. IEEE Access, 2020, 8: 93648-93662. doi: 10.1109/ACCESS.2020.2994516
    [20] HOSSEN M I, ISLAM A, ANOWAR F, et al. Generating cyber threat intelligence to discover potential security threats using classification and topic modeling[EB/OL]. (2021-08-16)[2022-07-14]. http://arxiv.org/abs/2108.06862.
    [21] 陈斌. 基于注意力机制的网络表示学习算法研究[D]. 合肥: 中国科学技术大学, 2020: 13-32.

    CHEN B. Network representation learning algorithm research based on attention mechanism[D]. Hefei: University of Science and Technology of China, 2020: 13-32(in Chinese).
    [22] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: Online learning of social representations[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710.
    [23] BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[EB/OL]. (2013-12-21)[2022-07-14]. https://arxiv.org/abs/1312.6203.
    [24] TANG J, QU M, WANG M Z, et al. LINE: Large-scale information network embedding[C]//Proceedings of the International Conference on World Wide Web. New York: ACM, 2015: 1067-1077.
    [25] WANG D X, CUI P, ZHU W W. Structural deep network embedding[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1225-1234.
    [26] DONG Y X, CHAWLA N V, SWAMI A. Metapath2vec: Scalable representation learning for heterogeneous networks[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2017: 135-144.
    [27] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2016-09-09)[2022-07-20]. http://arxiv.org/abs/1609.02907.
    [28] HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the International Conference on Neural Information Processing Systems. New York: ACM, 2017: 1025–1035.
    [29] LYU Q S, DING M, LIU Q, et al. Are we really making much progress? Revisiting, benchmarking and refining heterogeneous graph neural networks[C]//Proceedings of the ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021: 1150-1160.
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  29
  • HTML全文浏览量:  8
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-05
  • 录用日期:  2022-09-09
  • 网络出版日期:  2022-12-28
  • 整期出版日期:  2024-07-18

目录

    /

    返回文章
    返回
    常见问答