留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种自动实时的物联网在野漏洞攻击检测方法

何清林 王丽宏 陈艳姣 王星

何清林,王丽宏,陈艳姣,等. 一种自动实时的物联网在野漏洞攻击检测方法[J]. 北京航空航天大学学报,2024,50(7):2195-2205 doi: 10.13700/j.bh.1001-5965.2022.0592
引用本文: 何清林,王丽宏,陈艳姣,等. 一种自动实时的物联网在野漏洞攻击检测方法[J]. 北京航空航天大学学报,2024,50(7):2195-2205 doi: 10.13700/j.bh.1001-5965.2022.0592
HE Q L,WANG L H,CHEN Y J,et al. An automatic and real-time detection method of IoT in-the-wild vulnerability attack[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2195-2205 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0592
Citation: HE Q L,WANG L H,CHEN Y J,et al. An automatic and real-time detection method of IoT in-the-wild vulnerability attack[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2195-2205 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0592

一种自动实时的物联网在野漏洞攻击检测方法

doi: 10.13700/j.bh.1001-5965.2022.0592
详细信息
    通讯作者:

    E-mail:hql@cert.org.cn

  • 中图分类号: TP393.4;TP312

An automatic and real-time detection method of IoT in-the-wild vulnerability attack

More Information
  • 摘要:

    与互联网相连的海量物联网(IoT)设备容易被黑客攻击和利用,进而造成关键IoT应用的瘫痪。漏洞利用是一种常用的针对IoT设备的攻击方式,然而由于在野的漏洞利用形式多样、变异性和伪装性强,如何快速自动识别针对IoT设备的在野漏洞攻击极具挑战。为此,提出一种基于混合深度学习判别和开源情报关联的IoT漏洞攻击检测方法,所提检测方法可以实时判别网络流量中的IoT在野漏洞攻击行为,并且能够精准识别漏洞攻击行为的具体类别。实验结果表明:所提检测方法在大规模数据集上的判别准确率超过99.99%。所提检测方法在真实场景中应用效果显著,在不到1个月时间内发现了13种新的在野漏洞攻击。

     

  • 图 1  IoT漏洞信息披露和在野利用发现

    Figure 1.  IoT vulnerability information disclosure and inofficial exploits discovery

    图 2  本文检测方法框架

    Figure 2.  Framework of the proposed detection method

    图 3  HTTP请求报文典型格式

    Figure 3.  Typical format of HTTP request messages

    图 4  2个IoT漏洞攻击的报文示例

    Figure 4.  Request message examples of two IoT exploits

    图 5  本文模型结构

    Figure 5.  Structure of the proposed model

    图 6  精准率和召回率实验结果

    Figure 6.  Experimental results of precision and recall rate

    图 7  2种模型损失值

    Figure 7.  Loss of two models

    表  1  最近3年部分在野利用IoT漏洞示例

    Table  1.   Some inofficial IoT exploit examples in past three years

    CVE编号 漏洞名称 针对设备
    CVE_2021_33544 UDP_Technology_Geutebruck_IP_Cameras_Command_Injection IP摄像头
    CVE_2021_33514 HTTP_Router_NetgearGC108P Netgear路由器
    CVE_2021_31755 Tenda_AC11_Router_Stack_Buffer_Overflow_Vulnerability 腾达路由器
    CVE_2021_28799on QNAP_NAS_Hybrid_Backup_Sync_Command_Injecti QNAP NAS设备
    CVE_2021_20090 Arcadyan_Buffalo_Routers_Configuration_File_Injection Buffalo组件的路由器
    CVE_2021_1497 Cisco_HyperFlex_HX_Data_Platform_Command_Execution Cisco管理平台
    CVE_2020_9054_ Zyxel_NAS_RCE_Attempt_Inbound Zyxel NAS设备
    CVE_2020_8949 Gocloud_Router_Remote_Code_Execution Gocloud路由器
    CVE_2020_8515 DrayTek_Vigor_RCE Vigor路由器
    CVE_2020_35713 Linksys_RE6500_1_0_11_001_Remote_Code_Execution Linksys路由器
    CVE_2020_35576 TpLink_TLWR841N_Command_Injection Tplink路由器
    CVE_2020_17456 Seowon_Route Seowon路由器
    CVE_2020_13872 DLink_DIR_865L_Ax120B01_Command_Injection Dlink路由器
    CVE_2020_10987 Tenda_AC15_AC1900_goform_setUsbUnload_RCE 腾达路由器
    下载: 导出CSV

    表  2  F1ACC实验结果

    Table  2.   Experimental results of F1 and ACC

    正负样本比例 F1/% ACC/%
    Bert[29]模型 本文模型 Bert[29]模型 本文模型
    1∶1(总数106) 99.93 99.94 99.95 99.96
    1∶2(总数1.5×106) 99.97 99.97 99.99 99.99
    1∶4(总数2.5×106) 99.93 99.96 99.98 99.98
    1∶8(总数4.5×106) 99.96 99.97 99.96 99.97
    下载: 导出CSV

    表  3  模型每轮训练时间

    Table  3.   Model training time in each round

    样本数量/106 训练时间/min
    Bert[29]模型 本文模型
    1 62 71
    1.5 89 102
    2.5 127 146
    4.5 146 167
    下载: 导出CSV

    表  4  IoT漏洞攻击中的攻击目标及攻击参数

    Table  4.   Attack targets and parameters in IoT exploits

    漏洞编号 攻击目标 攻击参数
    CVE_2021_33544 /uapi-cgi/certmngr.cgi action,createselfcert,local
    CVE_2021_33514 cgi/setup.cgi token
    CVE_2021_31755 /goform/setmac mac,wifien,wifissid
    CVE_2021_28799 /cgi-bin/backup/hbs_mgnt.cgi run_cmd,jisoosocoolhbsmgnt
    CVE_2021_20090 /images/../apply_abstract.cgi action,submit_button,action_params,arc_ping_ipaddress
    CVE_2021_1497 /storfs-asup action,token
    CVE_2020_9054 /cgi-bin/weblogin.cgi adv,username,password
    CVE_2020_8949 /cgi-bin/webui/admin/tools/app_ping/diag_ping/ None
    CVE_2020_8515 cgi-bin/mainfunction.cgi action,keypath,loginPwd
    CVE_2020_35713 /goform/setSysAdm AuthTimeout, admpasshint
    CVE_2020_35576 /cgi? maxhopcount, numberoftries, host
    CVE_2020_17456 /cgi-bin/system_log.cgi Command, traceMode
    CVE_2020_13872 /portal/__ajax_explorer.sgi Action/path/where/en
    CVE_2020_10987 /goform/setUsbUnload setUsbUnload
    下载: 导出CSV

    表  5  IoT漏洞攻击中常见的攻击指令

    Table  5.   Common attack commands in IoT exploits

    攻击指令类型 关键词
    样本植入 wget,curl,tftp,fetch
    反弹回连 bash-i,tmp/socat exec
    探测 Nc,echo,dnslog
    隐藏痕迹 Rm,mv,base64,decodeHex
    命令执行 chmod, system,md5sum, busybox ,exec
    下载: 导出CSV
  • [1] 绿盟科技. 2020物联网安全年报[EB/OL]. (2021-01-08)[2022-05-28]. https://www.nsfocus.com.cn/html/2021/92_0118/147.html.

    NSFOCUS. 2020 IoT Security annual report[EB/OL]. (2021-01-08)[2022-05-28]. https://www.nsfocus.com.cn/html/2021/92_0118/147.html(in Chinese).
    [2] CVE-CVE [EB/OL]. (2022-05-28) [2022-05-29]. https://cve.mitre.org/.
    [3] Exploit-DB - exploits for penetration testers[EB/OL]. (2022-05-28) [2022-05-29]. https://www.exploit-db.com/.
    [4] Packet storm-exploits the possibilities[EB/OL]. (2022-05-29) [2022-05-30]. https://packetstormsecurity.com/.
    [5] Snort - network intrusion detection & prevention system[EB/OL]. (2022-05-01) [2022-05-30]. https://www.snort.org/.
    [6] Yara-the pattern matching swiss knife for malware researchers[EB/OL]. (2022-05-01) [2022-05-30]. https://virustotal.github.io/yara/.
    [7] KDD cup 1999 data [EB/OL]. (2000-09-18) [2022-05-30]. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
    [8] SHIRAVI A, SHIRAVI H, TAVALLAEE M, et al. Toward developing a systematic approach to generate benchmark datasets for intrusion detection[J]. Computers and Security, 2012, 31(3): 357-374. doi: 10.1016/j.cose.2011.12.012
    [9] RING M, WUNDERLICH S, GRUEDL D, et al. Technical report cidds-001 data set[EB/OL]. (2017-04-28) [2022-05-30]. https://www.hs-coburg.de/fileadmin/hscoburg/Forschung/WISENT_cidds_Technical_Report.pdf.
    [10] LEE W K, STOLFO S J. Data mining approaches for intrusion detection[C]//Proceedings of the Conference on USENIX Security Symposium . New York: ACM, 1998: 6.
    [11] KHAN L, AWAD M, THURAISINGHAM B. A new intrusion detection system using support vector machines and hierarchical clustering[J]. The VLDB Journal, 2007, 16(4): 507-521. doi: 10.1007/s00778-006-0002-5
    [12] NGUYEN TTT, ARMITAGE G. A survey of techniques for Internet traffic classification using machine learning[J]. IEEE Communications Surveys & Tutorials, 2008, 10(4): 56-76.
    [13] SOMMER R, PAXSON V. Outside the closed world: On using machine learning for network intrusion detection[C]//Proceedings of the IEEE Symposium on Security and Privacy. Piscataway: IEEE Press, 2010: 305-316.
    [14] SUTHAHARAN S. Big data classification[C]//Proceedings of the Measurement and Modeling of Computer Systems. New York: ACM, 2014, 41(4): 70-73.
    [15] MA J, SAUL L K, SAVAGE S, et al. Identifying suspicious URLs: An application of large-scale online learning[C]//Proceedings of the Annual International Conference on Machine Learning. Montreal : ICML , 2009: 681-688.
    [16] MA J, SAUL L K, SAVAGE S, et al. Byond blacklists: Learning to detect malicious web sites from suspicious URLs[C]//Proceedings of the Acm Sigkdd International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2009: 1245-1254.
    [17] ZHAO P L, HOI S C H. Cost-sensitive online active learning with application to malicious URL detection[C]//Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2013: 919-927.
    [18] 李佳, 云晓春, 李书豪, 等. 基于混合结构深度神经网络的HTTP恶意流量检测方法[J]. 通信学报, 2019, 40(1): 24-33. doi: 10.11959/j.issn.1000-436x.2019019

    LI J, YUN X C, LI S H, et al. HTTP malicious traffic detection method based on hybrid structure deep neural network[J]. Journal on Communications, 2019, 40(1): 24-33(in Chinese). doi: 10.11959/j.issn.1000-436x.2019019
    [19] HODO E, BELLEKENS X, HAMILTON A, et al. Threat analysis of IoT networks using artificial neural network intrusion detection system[C]//Proceedings of the International Symposium on Networks, Computers and Communications. Piscataway: IEEE Press, 2016: 1-6.
    [20] THAMILARASU G, CHAWLA S. Towards deep-learning-driven intrusion detection for the Internet of Things[J]. Sensors, 2019, 19(9): 1977. doi: 10.3390/s19091977
    [21] AL-HAWAWREH M, MOUSTAFA N, SITNIKOVA E. Identification of malicious activities in industrial Internet of Things based on deep learning models[J]. Journal of Information Security and Applications, 2018, 41: 1-11. doi: 10.1016/j.jisa.2018.05.002
    [22] ABDEL-BASSET M, HAWASH H, CHAKRABORTTY R K, et al. Semi-supervised spatiotemporal deep learning for intrusions detection in IoT networks[J]. IEEE Internet of Things Journal, 2021, 8(15): 12251-12265. doi: 10.1109/JIOT.2021.3060878
    [23] TSIMENIDIS S, LAGKAS T, RANTOS K. Deep learning in IoT intrusion detection[J]. Journal of Network and Systems Management, 2021, 30(1): 8.
    [24] CVE-2021-20090[EB/OL]. (2022-06-14) [2022-06-15]. https://medium.com/tenable-teblog/bypassing-authentication-on-arcad-an-routers-with-cve-2021-20090-and-rooting-some-buffalo-ea1dd30980c2.
    [25] IoT_Exploits_Founder[EB/OL]. (2022-1-12) [2022-06-15]. https://github.com/bennyhee/IoT_Exploits_Founder.git.
    [26] ZHAO Y C, WANG G T, TANG C X, et al. A battle of network structures: an empirical study of CNN, transformer, and MLP[EB/OL]. (2021-08-30) [2022-06-17]. http://arxiv.org/abs/2108.13002.
    [27] KIM Y. Convolutional neural networks for sentence classification[EB/OL]. (2014-08-25) [2022-06-15]. http://arxiv.org/abs/1408.5882.
    [28] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. (2017-06-12) [2022-06-15]. http://arxiv.org/abs/1706.03762.
    [29] DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding[EB/OL]. (2018-10-11) [2022-06-15]. http://arxiv.org/abs/1810.04805.
    [30] 崔琳, 杨黎斌, 何清林, 等. 基于开源信息平台的威胁情报挖掘综述[J]. 信息安全学报, 2022, 7(1): 1-26.

    CUI L, YANG L B, HE Q L, et al. Survey of cyber threat intelligence mining based on open source information platform[J]. Journal of Cyber Security, 2022, 7(1): 1-26(in Chinese).
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  169
  • HTML全文浏览量:  78
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-05
  • 录用日期:  2022-09-02
  • 网络出版日期:  2023-03-29
  • 整期出版日期:  2024-07-18

目录

    /

    返回文章
    返回
    常见问答