留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于麻雀搜索算法的ARAIM故障子集优化算法

王尔申 王欢 雷虹 曾洪正 曲萍萍 庞涛

王尔申,王欢,雷虹,等. 基于麻雀搜索算法的ARAIM故障子集优化算法[J]. 北京航空航天大学学报,2024,50(7):2066-2073 doi: 10.13700/j.bh.1001-5965.2022.0596
引用本文: 王尔申,王欢,雷虹,等. 基于麻雀搜索算法的ARAIM故障子集优化算法[J]. 北京航空航天大学学报,2024,50(7):2066-2073 doi: 10.13700/j.bh.1001-5965.2022.0596
WANG E S,WANG H,LEI H,et al. ARAIM-related fault subset optimization algorithm based on sparrow search algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2066-2073 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0596
Citation: WANG E S,WANG H,LEI H,et al. ARAIM-related fault subset optimization algorithm based on sparrow search algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2066-2073 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0596

基于麻雀搜索算法的ARAIM故障子集优化算法

doi: 10.13700/j.bh.1001-5965.2022.0596
基金项目: 国家自然科学基金(62173237);中国民航大学民航航班广域监视与安全管控技术重点实验室开放基金(202105);嵩山实验室预研项目(YYJC062022017);卫星导航系统与装备技术国家重点实验室开放基金(CEPNT2022B04,CEPNT2022A01);省部共建动态测试技术国家重点实验室开放基金(2023-SYSJJ-04); 民航飞行技术与飞行安全重点实验室开放基金(FZ2021KF15,FZ2021ZZ06,FZ2020KF09);辽宁省应用基础研究计划(2022020502-JH2/1013,2022JH2/101300150);沈阳市科技计划(22-322-3-34)
详细信息
    通讯作者:

    E-mail:wanges_2016@126.com

  • 中图分类号: V221+.3;TB553

ARAIM-related fault subset optimization algorithm based on sparrow search algorithm

Funds: National Natural Science Foundation of China (62173237); Open Fund of Key Laboratory of Civil Aviation Flights Wide Area Surveillance and Safety Control Technology of Civil Aviation University of China (202105); Songshan Laboratory Pre-research Foundation (YYJC062022017); Open Fund of State Key Laboratory of Satelite Navigation System and Equipmet Technology (CEPNT2022B04,CEPNT2022A01); Open Fund of the National Key Laboratory of Dynamic Testing Technology, Co-established by the Province and Ministry (2023-SYSJJ-04); Open Fund of Key Laboratory of Flight Techniques and Flight Safety CAAC (FZ2021KF15,FZ2021ZZ06,FZ2020KF09); Applied Basic Research Programs of Liaoning Province (2022020502-JH2/1013,2022JH2/101300150); Shenyang Science and Technology Program (22-322-3-34)
More Information
  • 摘要:

    针对多假设解分离(MHSS)测试受卫星数目增加、潜在故障概率提高的影响,使得需要监测的子集数量增长而带来计算负担增加的问题,提出一种基于麻雀搜索算法(SSA)的高级接收机自主完好性监测(ARAIM)故障子集优化算法。结合SSA将可见卫星分配为发现者、跟随者和侦查预警者,通过剔除能量较低的个体降低计算冗余。在搜索过程中,引入自适应步长提升迭代速度,提高算法的执行效率。在双星座情况下,对完好性支持信息(ISM)参数进行3种假设,验证了所提算法的可用性,并与传统算法进行了对比分析。结果表明:通过所提算法得到的子集数量较传统算法减少了75%~90%,相同条件下,仿真用时降低了68%~88%,ARAIM可用性变化不超过2%。

     

  • 图 1  子集数量和仿真用时对比

    Figure 1.  Comparison of subset number and simulation time

    图 2  第1组参数下ARAIM全球可用性对比

    Figure 2.  Comparison of global availability of ARAIM with parameters of group 1

    图 3  第2组参数下ARAIM全球可用性对比

    Figure 3.  Comparison of global availability of ARAIM with parameters of group 2

    图 4  第3组参数下ARAIM全球可用性对比

    Figure 4.  Comparison of global availability of ARAIM with parameters of group 3

    图 5  第4组参数下ARAIM全球可用性对比

    Figure 5.  Comparison of global availability of ARAIM with parameters of group 4

    图 6  第5组参数下ARAIM全球可用性对比

    Figure 6.  Comparison of global availability of ARAIM with parameters of group 5

    图 7  第6组参数下ARAIM全球可用性对比

    Figure 7.  Comparison of global availability of ARAIM with parameters of group 6

    表  1  ISM参数设置

    Table  1.   Setting of ISM parameters

    假设状态 组号 星座 $ {P_{{\mathrm{sat}}}} $ $ {P_{{\mathrm{const}}}} $ $ {b_{{\mathrm{nom}}}} $ $ {\sigma _{{\mathrm{URA}}}} $ $ {\sigma _{{\mathrm{URE}}}} $
    理想状态1GPS10−510−80.7510.66
    BDS10−410−80.7510.66
    2GPS10−410−80.7510.66
    BDS10−510−80.7510.66
    差异状态3GPS10−510−40.7510.66
    BDS10−410−50.7510.66
    4GPS10−410−50.7510.66
    BDS10−510−40.7510.66
    保守状态5GPS10−410−40.752.41.6
    BDS10−310−40.752.41.6
    6GPS10−310−40.752.41.6
    BDS10−410−40.752.41.6
    下载: 导出CSV

    表  2  不同ISM参数下$ {N_{\max }} $取值

    Table  2.   $ {N_{\max }} $ under different ISM parameters

    Pevent Nmax
    N=10 N=15 N=20 N=20 N=30 N=35 N=40
    10−5 1 1 1 1 1 1 1
    10−4 2 2 2 2 2 2 2
    5×10−4 2 2 3 3 3 3 3
    10−3 3 3 3 3 3 3 4
    下载: 导出CSV
  • [1] 胡自全, 何秀凤. 组合GNSS系统可见卫星分析[J]. 全球定位系统, 2015, 40(3): 1-5.

    HU Z Q, HE X F. Analysis the visible satellites of combined GNSS system[J]. GNSS World of China, 2015, 40(3): 1-5(in Chinese).
    [2] 王尔申, 孙彩苗, 黄煜峰, 等. 改进粒子群优化的卫星导航选星算法[J]. 北京航空航天大学学报, 2021, 47(1): 1-6.

    WANG E S, SUN C M, HUANG Y F, et al. Satellite navigation satellite selection algorithm based on improved particle swarm optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 1-6(in Chinese).
    [3] 崔瑞云, 倪育德, 王琳琳, 等. 北斗卫星导航系统完好性参数研究[J]. 现代导航, 2015, 6(1): 17-22.

    CUI R Y, NI Y D, WANG L L, et al. Research on integrity parameters of BeiDou satellite navigation system[J]. Modern Navigation, 2015, 6(1): 17-22(in Chinese).
    [4] CHANG J, ZHAN X Q, ZHAI Y W, et al. Analysis of BDS GEO satellite multipath effect for GNSS integrity monitoring in civil aviation[J]. Aerospace Systems, 2021, 4(2): 133-141. doi: 10.1007/s42401-020-00074-7
    [5] WANG S Z, ZHAI Y W, ZHAN X Q. Characterizing BDS signal-in-space performance from integrity perspective[J]. Navigation, 2021, 68(1): 157-183. doi: 10.1002/navi.409
    [6] 韩清清, 王利, 罗思龙, 等. ARAIM算法的风险概率优化分配[J]. 测绘学报, 2021, 50(12): 1751-1761. doi: 10.11947/j.AGCS.2021.20200260

    HAN Q Q, WANG L, LUO S L, et al. Optimal allocation of risk probability based on ARAIM algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(12): 1751-1761(in Chinese). doi: 10.11947/j.AGCS.2021.20200260
    [7] 王尔申, 孙彩苗, 佟刚, 等. 基于PSO的多星座GNSS垂直保护级优化方法[J]. 北京航空航天大学学报, 2021, 47(11): 2175-2180.

    WANG E S, SUN C M, TONG G, et al. Optimization method of multi-constellation GNSS vertical protection level based on particle swarm optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2175-2180(in Chinese).
    [8] CHANG J, ZHAN X Q, ZHAI Y W. Real-time integrity monitoring for civil aviation with improved navigation performance[C]//Proceedings of the International Conference on Aerospace System Science and Engineering. Berlin: Springer, 2020: 107-127.
    [9] LIU B Y, GAO Y, GAO Y T, et al. HPL calculation improvement for Chi-squared residual-based ARAIM[J]. GPS Solutions, 2022, 26(2): 45. doi: 10.1007/s10291-021-01220-0
    [10] BLANCH J, WALKER T, ENGE P, et al. Baseline advanced RAIM user algorithm and possible improvements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 713-732. doi: 10.1109/TAES.2014.130739
    [11] ZHANG Y B, WANG L, FAN L, et al. MHSS ARAIM algorithm combined with gross error detection[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1): 38-46.
    [12] GAO Y T, JIANG Y, GAO Y, et al. A linear Kalman filter-based integrity monitoring considering colored measurement noise[J]. GPS Solutions, 2021, 25(2): 59. doi: 10.1007/s10291-021-01086-2
    [13] WALTER T, BLANCH J, ENGE P. Reduced subset analysis for multi-constellation ARAIM[C]//Proceedings of the International Technical Meeting of the Institute of Navigation. Washington, D.C.: INST Navigation, 2014: 89-98.
    [14] GE Y S, WANG Z P, ZHU Y B. Reduced ARAIM monitoring subset method based on satellites in different orbital planes[J]. GPS Solutions, 2017, 21(4): 1443-1456. doi: 10.1007/s10291-017-0658-x
    [15] BLANCH J, WALTER T, ENGE P. Fixed subset selection to reduce advanced RAIM complexity[C]//Proceedings of the International Technical Meeting of the Institute of Navigation. Washington, D.C.: INST Navigation, 2018: 88-98.
    [16] MENG Q, LIU J Y, ZENG Q H, et al. Improved ARAIM fault modes determination scheme based on feedback structure with probability accumulation[J]. GPS Solutions, 2019, 23(1): 16.
    [17] LUO S L, WANG L, TU R, et al. Satellite selection methods for multi-constellation advanced RAIM[J]. Advances in Space Research, 2020, 65(5): 1503-1517. doi: 10.1016/j.asr.2019.12.015
    [18] 刘金鑫, 滕继涛, 李锐, 等. 基于子集包含减少ARAIM子集数量的方法[J]. 北京航空航天大学学报, 2020, 46(8): 1592-1600.

    LIU J X, TENG J T, LI R, et al. Method for reducing number of ARAIM subsets based on subset inclusion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(8): 1592-1600(in Chinese).
    [19] XUE J K, SHEN B. A novel swarm intelligence optimization approach: Sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
    [20] WANG Z, HU W, WANG E S, et al. Enhancement dataset for low altitude unmanned aerial vehicle detection[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2021, 38(6): 914-926.
    [21] 王尔申, 郭靖, 宏晨, 等. 改进目标收益函数的无人机集群空地对抗模型[J]. 南京航空航天大学学报, 2021, 53(6): 888-897.

    WANG E S, GUO J, HONG C, et al. UAV swarm air-ground engagement model with improved payoff[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(6): 888-897(in Chinese).
    [22] BLANCH J, WALKER T, ENGE P, et al. Advanced RAIM user algorithm description: Integrity support message processing, fault detection, exclusion, and protection level calculation[C]//Proceedings of the 25th International Technical Meeting of the Satellite Division of the Institute of Navigation. Washington, D.C.: INST Navigation, 2012: 2828-2849.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  518
  • HTML全文浏览量:  87
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-07
  • 录用日期:  2022-09-14
  • 网络出版日期:  2022-10-09
  • 整期出版日期:  2024-07-18

目录

    /

    返回文章
    返回
    常见问答