留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自动化私有协议识别的挖矿流量检测

童瑞谦 胡夏南 刘优然 秦研 张宁 王强

童瑞谦,胡夏南,刘优然,等. 基于自动化私有协议识别的挖矿流量检测[J]. 北京航空航天大学学报,2024,50(7):2304-2313 doi: 10.13700/j.bh.1001-5965.2022.0598
引用本文: 童瑞谦,胡夏南,刘优然,等. 基于自动化私有协议识别的挖矿流量检测[J]. 北京航空航天大学学报,2024,50(7):2304-2313 doi: 10.13700/j.bh.1001-5965.2022.0598
TONG R Q,HU X N,LIU Y R,et al. Mining traffic detection based on automated private protocol identification[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2304-2313 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0598
Citation: TONG R Q,HU X N,LIU Y R,et al. Mining traffic detection based on automated private protocol identification[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2304-2313 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0598

基于自动化私有协议识别的挖矿流量检测

doi: 10.13700/j.bh.1001-5965.2022.0598
基金项目: 信息系统安全技术重点实验室基金(CNKLSTISS-6142111190501)
详细信息
    通讯作者:

    E-mail:zhang_n@mail.xidian.edu.cn

  • 中图分类号: TP393.08

Mining traffic detection based on automated private protocol identification

Funds: Funding of Key Laboratory of Information System Security (CNKLSTISS-6142111190501)
More Information
  • 摘要:

    面向虚拟货币挖矿过程中私有协议流量检测识别需求,提出面向未知挖矿行为通信协议流量的自动化识别方法。改进N-gram报文格式分割算法和字典树正则表达式生成算法,实现私有协议特征签名自动化生成,对明文通信的挖矿流量进行精确匹配;基于经典加密流量分类模型,改进基于流交互特征的流量分析方法,实现轻量级的挖矿行为识别模型,对加密通信的挖矿流量进行实时检测。测试结果表明:所提方法生成的挖矿通信协议特征签名可覆盖当前3种主流明文挖矿流量,在实网验证过程中可达到0.996的识别精确率和0.985的召回率。

     

  • 图 1  挖矿流量检测方法流程

    Figure 1.  Flowchart of mining traffic detection method

    图 2  提取出的冗余字符串

    Figure 2.  Extracted redundant strings

    图 3  基于N-gram分割算法报文分段流程

    Figure 3.  N-gram segmentation algorithm-based message segmentation flow

    图 4  重复模式替换与合并

    Figure 4.  Repeated pattern replacement and merging

    图 5  公共词位置的合并算法流程

    Figure 5.  Flowchart of merging algorithm for common word position

    图 6  正则匹配算法阈值与性能关系

    Figure 6.  Relationship between threshold and performance of regular matching algorithm

    图 7  特征权重阈值筛选测试结果

    Figure 7.  Test results of feature weight threshold screening

    图 8  模型对比测试

    Figure 8.  Model comparison test

    图 9  随机森林模型性能测试

    Figure 9.  Performance test of random forest models

    表  1  测试环境

    Table  1.   Test environment

    配置 操作系统 内核版本 核心处理器 图形处理器 内存大小
    性能测试主机 Arch Linux x86_64 Linux 5.18.3-arch1-1 Intel Core i7-9750H @ 12x 2.60 GHz NVIDIA GeForce RTX 2060 15.5 GB
    数据集
    捕获主机
    Ubuntu 20.04 focal x86_64 Linux 5.4.0-110-generic Intel Core i5-9300H @ 8x 4.1 GHz NVIDIA GeForce GTX 1050 15789 MB
    服务端采集 Ubuntu 20.04 focal x86_64 Linux 5.4.0-94-generic Intel Xeon Platinum 8269CY @ 2x 2.5 GHz Cirrus Logic GD 5446 1879 MB
    下载: 导出CSV
  • [1] JIANG S R, LI Y Z, LU Q Y, et al. Policy assessments for the carbon emission flows and sustainability of Bitcoin blockchain operation in China[J]. Nature Communications, 2021, 12: 1938. doi: 10.1038/s41467-021-22256-3
    [2] SQUAREPANTS S. Bitcoin: A peer-to-peer electronic cash system[J]. SSRN Electronic Journal, 2008: 21260.
    [3] RUSSO M, ŠRNDIĆ N, LASKOV P. Detection of illicit cryptomining using network metadata[J]. EURASIP Journal on Information Security, 2021, 2021: 11. doi: 10.1186/s13635-021-00126-1
    [4] 郑云超, 范渊, 黄进. 一种恶意挖矿行为识别方法、装置、设备及存储介质: CN113177791A[P]. 2021-07-27.

    ZHENG Y C, FAN Y, HUANG J. Malicious mining behavior identification method and device, equipment and storage medium: CN113177791A[P]. 2021-07-27(in Chinese).
    [5] 邢宝玉, 白淳升. 基于GPU恶意挖矿行为的检测方法与装置: CN202010578925. XA[P]. 2020-06-23.

    XING B Y, BAI C S. Method and apparatus for detecting GPU malicious mining behavior based on extracted redundant strings: CN202010578925. XA[P]. 2020-06-23(in Chinese).
    [6] 余文珣, 余斯聪, 钟英南, 等. 一种基于流量特征识别挖矿程序的方法和系统: CN202010123819.2[P]. 2020-10-12.

    YU W X, YU S C, ZHONG Y N, et al. A method and system for identifying mining programs based on traffic characteristics: CN202010123819.2[P]. 2020-10-12(in Chinese).
    [7] 杨家海, 张世泽, 王之梁, 等. 基于时间序列追踪的挖矿流量检测方法和装置 CN202110203327.9[P] . 2021-10-20.

    YANG J H, ZHANG S Z, WANG Z L, et al. Mining traffic detection method and device based on time series tracking CN202110203327.9[P]. 2021-10-20(in Chinese).
    [8] PERDISCI R, LEE W K, FEAMSTER N. Behavioral clustering of HTTP-based malware and signature generation using malicious network traces[C]//Proceedings of the 7th USENIX Conference on Networked Systems Design and Implementation. New York: ACM, 2010: 26.
    [9] BEDDOE M A. Network protocol analysis using bioinformatics algorithms[EB/OL]. (2004-06-01)[2021-10-12]. http://phreakocious.net/PI/PI.pdf.
    [10] 李峻辰, 程光, 杨刚芹. 基于网络流量的私有协议逆向技术综述[J]. 计算机研究与发展, 2023, 60(1): 167-190. doi: 10.7544/issn1000-1239.202110722

    LI J C, CHENG G, YANG G Q. Review of private protocol reverse technology based on network traffic[J]. Computer Research and Development, 2023, 60(1): 167-190(in Chinese). doi: 10.7544/issn1000-1239.202110722
    [11] BOSSERT G, GUIHERY F, HIET G. Towards automated protocol reverse engineering using semantic information[C]//Proceedings of the 9th ACM Symposium on Information, Computer and Communications Security. New York: ACM, 2014: 51-62.
    [12] 黎敏, 余顺争. 抗噪的未知应用层协议报文格式最佳分段方法[J]. 软件学报, 2013, 24(3): 604-617.

    LI M, YU S Z. Noise-tolerant and optimal segmentation of message formats for unknown application-layer protocols[J]. Journal of Software, 2013, 24(3): 604-617(in Chinese).
    [13] DE CARLI L, TORRES R, MODELO-HOWARD G, et al. Botnet protocol inference in the presence of encrypted traffic[C]//Proceedings of the IEEE Conference on Computer Communications. Piscataway: IEEE Press, 2017: 1-9.
    [14] BERNAILLE L, TEIXEIRA R. Early recognition of encrypted applications[C]//Proceedings of the Passive and Active Network Measurement. Berlin: Springer, 2007: 165-175.
    [15] DAINOTTI A, PESCAPE A, CLAFFY K C. Issues and future directions in traffic classification[J]. IEEE Network, 2012, 26(1): 35-40. doi: 10.1109/MNET.2012.6135854
    [16] VELAN P, ČERMÁK M, ČELEDA P, et al. A survey of methods for encrypted traffic classification and analysis[J]. Networks, 2015, 25(5): 355-374.
    [17] DRAPER-GIL G, LASHKARI A H, MAMUN M S I, et al. Characterization of encrypted and VPN traffic using time-related features[C]//Proceedings of the 2nd International Conference on Information Systems Security and Privacy. Setúbal: SciTePress, 2016: 407-414.
    [18] 李慧慧, 张士庚, 宋虹, 等. 结合多特征识别的恶意加密流量检测方法[J]. 信息安全学报, 2021, 6(2): 129-142.

    LI H H, ZHANG S G, SONG H, et al. Robust malicious encrypted traffic detection based with multiple features[J]. Journal of Cyber Security, 2021, 6(2): 129-142(in Chinese).
    [19] LOTFOLLAHI M, SIAVOSHANI M J, ZADE R S H, et al. Deep packet: A novel approach for encrypted traffic classification using deep learning[J]. Soft Computing, 2020, 24(3): 1999-2012. doi: 10.1007/s00500-019-04030-2
    [20] KONDRAK G. N-gram similarity and distance[C]//Proceedings of the String Processing and Information Retrieval. Berlin: Springer, 2005: 115-126.
    [21] BENOV D M. The Manhattan project, the first electronic computer and the Monte Carlo method[J]. Monte Carlo Methods and Applications, 2016, 22(1): 73-79. doi: 10.1515/mcma-2016-0102
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  254
  • HTML全文浏览量:  95
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-09
  • 录用日期:  2022-09-16
  • 网络出版日期:  2023-03-29
  • 整期出版日期:  2024-07-18

目录

    /

    返回文章
    返回
    常见问答