留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

适应人体重心起伏的悬吊减重康复系统设计

王创 陈文杰 陈伟海 孙先涛 林岩

王创,陈文杰,陈伟海,等. 适应人体重心起伏的悬吊减重康复系统设计[J]. 北京航空航天大学学报,2024,50(7):2322-2330 doi: 10.13700/j.bh.1001-5965.2022.0605
引用本文: 王创,陈文杰,陈伟海,等. 适应人体重心起伏的悬吊减重康复系统设计[J]. 北京航空航天大学学报,2024,50(7):2322-2330 doi: 10.13700/j.bh.1001-5965.2022.0605
WANG C,CHEN W J,CHEN W H,et al. Design of suspension weight-support rehabilitation system adapted to fluctuation of human center of gravity[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2322-2330 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0605
Citation: WANG C,CHEN W J,CHEN W H,et al. Design of suspension weight-support rehabilitation system adapted to fluctuation of human center of gravity[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2322-2330 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0605

适应人体重心起伏的悬吊减重康复系统设计

doi: 10.13700/j.bh.1001-5965.2022.0605
基金项目: 国家自然科学基金面上项目(51975002)
详细信息
    通讯作者:

    E-mail:wjchen@ahu.edu.cn

  • 中图分类号: TP242

Design of suspension weight-support rehabilitation system adapted to fluctuation of human center of gravity

Funds: The General Program of National Natural Science Foundation of China (51975002)
More Information
  • 摘要:

    减重系统对下肢疾病患者的行走康复训练有重要影响。现有的下肢康复外骨骼减重装置大多只考虑如何减去患者体重的百分比,而忽略了患者身体重心的起伏。由于外骨骼的骨盆支架在竖直方向运动轨迹固定,患者步态的微小变化就会导致重心高度与骨盆支架运动轨迹不符,这一差异会作用到患者的骨盆位置,影响下肢关节的活动,并产生额外的风险。针对这一问题,提出通过采集足底压力来预测重心位置变化,并利用获得的重心轨迹解算出应施加的减重力方法,为患者训练提供安全有效的减重系统。所提方法的可行性已获仿真证实,并在研发的外骨骼减重系统上获得实际验证,模糊控制器跟踪重心轨迹的误差相比PID控制减少了21.2%,稳态误差维持在±1 mm范围内,髋膝关节的活动范围相比常规减重分别增加了14.36%和13.77%。

     

  • 图 1  下肢康复外骨骼总体构成

    Figure 1.  Overall composition of lower limb rehabilitation exoskeleton

    图 2  外骨骼助行腿简化结构

    Figure 2.  Simplified structure of exoskeleton walking legs

    图 3  人体等效质量模型

    Figure 3.  Human equivalent mass model

    图 4  足底压力传感器

    Figure 4.  Plantar pressure sensor

    图 5  竖直方向COG轨迹拟合曲线

    Figure 5.  Vertical COG trajectory fitting curve

    图 6  PID控制的减重系统

    Figure 6.  PID controlled weight support system

    图 7  PID控制20%和40%卸载力时重心变化

    Figure 7.  PID controls gravity center change at 20% and 40% unloading force

    图 8  模糊PID控制器

    Figure 8.  Fuzzy PID controller

    图 9  模糊PID控制20%和40%卸载力时重心变化

    Figure 9.  Fuzzy PID control of gravity center change at 20% and 40% unloading force

    图 10  20%和40%减重效果下跟踪误差

    Figure 10.  Tracking error for 20% and 40% weight support effect

    图 11  步态减重实验过程

    Figure 11.  Gait weight support experiment process

    图 12  常规减重时受试者双腿髋膝关节变化

    Figure 12.  Subjects' legs, hips and knees changed during routine weight support

    图 13  受试者1在2种步速下实验结果

    Figure 13.  Experimental results of subject 1 at two sets of walking speeds

    图 14  受试者2在2种步速下实验结果

    Figure 14.  Experimental results of subject 2 at two sets of walking speeds

    图 15  受试者3在2种步速下实验结果

    Figure 15.  Experimental results of subject 3 at two sets of walking speeds

    表  1  PID模糊规则

    Table  1.   PID fuzzy rule

    e ec
    NB NM NS ZO PS PM PB
    NB PB\NB\PS PB\NB\NS PM\NM\NB PM\NM\NB PS\NS\NB ZO\ZO\NM ZO\ZO\PS
    NM PB\NB\PS PB\NB\NS PM\NM\NB PS\NS\NM PS\NS\NM ZO\ZO\NS NS\ZO\ZO
    NS PM\NB\ZO PM\NM\NS PM\NS\NM PS\NS\NM ZO\ZO\NS NS\PS\NS NS\PS\ZO
    ZO PM\NM\ZO PM\NM\NS PS\NS\NS ZO\ZO\ZO NS\PS\NS NM\PM\NS NM\PM\ZO
    PS PS\NM\ZO PS\NS\ZO ZO\ZO\ZO NS\PS\ZO NS\PS\ZO NM\PM\ZO NM\PB\ZO
    PM PS\ZO\PB ZO\ZO\NS NS\PS\PS NM\PS\PS NM\PM\PS NM\PB\PS NB\PB\PB
    PB ZO\ZO\PB ZO\ZO\PM NM\PS\PM NM\PM\PS NM\PM\PS NB\PB\PS NB\PB\PB
    下载: 导出CSV

    表  2  受试者身体指标

    Table  2.   Subject physical indicators

    性别 年龄/岁 身高/cm 体重/kg 腿长/cm
    25 175 62 95
    24 165 53 88
    27 183 72 97
    下载: 导出CSV

    表  3  0.6 m/s步速下2种控制方式误差对比

    Table  3.   Error comparison of two control modes at 0.6 m/s (°)

    受试者 PID控制 模糊控制
    髋关节 膝关节 髋关节 膝关节
    1 1.4105 3.7834 1.7395 3.1093
    2 1.5154 2.6942 0.8095 0.9070
    3 1.4226 3.7847 1.8142 3.2301
    下载: 导出CSV

    表  4  1.0 m/s步速下2种控制方式误差对比

    Table  4.   Error comparison of two control modes at 1.0 m/s (°)

    受试者 PID控制 模糊控制
    髋关节 膝关节 髋关节 膝关节
    1 3.6020 7.0256 3.3919 6.4750
    2 3.6042 6.9877 3.3995 6.4245
    3 3.5544 7.0721 3.3667 6.5273
    下载: 导出CSV
  • [1] DONG Z H, LUCES J V S, HIRATA Y. Control and evaluation of body weight support walker for overground gait training[J]. IEEE Robotics and Automation Letters, 2021, 6(3): 4632-4639. doi: 10.1109/LRA.2021.3068691
    [2] KOYAMA T, KAI Y. Development of a walking support system controlled by servo brakes[C]//Proceedings of the IEEE/SICE International Symposium on System Integration. Piscataway: IEEE Press, 2015: 1-6.
    [3] LU Q, LIANG J X, QIAO B, et al. A new active body weight support system capable of virtually offloading partial body mass[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(1): 11-20. doi: 10.1109/TMECH.2011.2160555
    [4] 于宁波, 杨卓, 孙玉波, 等. 一种面向步态和平衡康复训练的单绳悬吊主动减重系统设计与控制方法研究[J]. 自动化学报, 2016, 42(12): 1819-1831.

    YU N B, YANG Z, SUN Y B, et al. Design and control of an active gravity offloading system for rehabilitation training of gait and balance[J]. Acta Automatica Sinica, 2016, 42(12): 1819-1831(in Chinese).
    [5] GLAUSER M, LIN Z L, ALLAIRE P E. Modeling and control of a partial body weight support system: an output regulation approach[J]. IEEE Transactions on Control Systems Technology, 2010, 18(2): 480-490. doi: 10.1109/TCST.2009.2016953
    [6] PENNYCOTT A, WYSS D, VALLERY H, et al. Effects of added inertia and body weight support on lateral balance control during walking[C]//Proceedings of the IEEE International Conference on Rehabilitation Robotics. Piscataway: IEEE Press, 2011: 1-5.
    [7] 何秉泽, 石萍, 李新伟, 等. 一种跟随人体重心高度的骨盆支撑减重康复系统[J]. 生物医学工程学杂志, 2022, 39(1): 175-184.

    HE B Z, SHI P, LI X W, et al. A pelvic support weight rehabilitation system tracing the human center of mass height[J]. Journal of Biomedical Engineering, 2022, 39(1): 175-184(in Chinese).
    [8] LING Y, XUE Y, XING J G, et al. Experimental studies on static postural balance using the body center of gravity test system[C]//Proceedings of the First International Symposium on Future Information and Communication Technologies for Ubiquitous HealthCare. Piscataway: IEEE Press, 2013: 1-5.
    [9] SONG Z D, CHEN W, WANG W B, et al. Dynamic modeling and simulation of a body weight support system[J]. Journal of Healthcare Engineering, 2020, 2020: 2802574.
    [10] SHIMBA T. An estimation of center of gravity from force platform data[J]. Journal of Biomechanics, 1984, 17(1): 53-60. doi: 10.1016/0021-9290(84)90080-0
    [11] 杨辉, 章亚男, 沈林勇, 等. 下肢康复机器人减重支撑系统的研究[J]. 机电工程, 2009, 26(7): 28-31. doi: 10.3969/j.issn.1001-4551.2009.07.009

    YANG H, ZHANG Y N, SHEN L Y, et al. Research of the BWS system for lower extremity rehabilitation robot[J]. Journal of Mechanical & Electrical Engineering Magazine, 2009, 26(7): 28-31(in Chinese). doi: 10.3969/j.issn.1001-4551.2009.07.009
    [12] QIN T, ZHANG L X. Coordinated control strategy for robotic-assisted gait training with partial body weight support[J]. Journal of Central South University, 2015, 22(8): 2954-2962. doi: 10.1007/s11771-015-2831-0
    [13] BENDA B J, RILEY P O, KREBS D E. Biomechanical relationship between center of gravity and center of pressure during standing[J]. IEEE Transactions on Rehabilitation Engineering, 1994, 2(1): 3-10. doi: 10.1109/86.296348
    [14] 梁旭, 王卫群, 苏婷婷, 等. 下肢康复机器人的主动柔顺自适应交互控制[J]. 机器人, 2021, 43(5): 547-556.

    LIANG X, WANG W Q, SU T T, et al. Active compliant and adaptive interaction control for a lower limb rehabilitation robot[J]. Robot, 2021, 43(5): 547-556(in Chinese).
    [15] SHARMA K, PALWALIA D K. A modified PID control with adaptive fuzzy controller applied to DC motor[C]//Proceedings of the International Conference on Information, Communication, Instrumentation and Control. Piscataway: IEEE Press, 2017, 1: 1-6.
    [16] KRISHNAN P H, ARJUN M. Control of BLDC motor based on adaptive fuzzy logic PID controller[C]//Proceedings of the International Conference on Green Computing Communication and Electrical Engineering. Piscataway: IEEE Press, 2014: 1-5.
    [17] LIU B, YAO G, XIAO X B, et al. The research on self-adaptive fuzzy PID controller[J]. Applied Mechanics and Materials, 2013(373): 1462-1465.
    [18] ZHANG X, LI J H, OVUR S E, et al. Novel design and adaptive fuzzy control of a lower-limb elderly rehabilitation[J]. Electronics, 2020, 9(2): 1-17.
    [19] 陈豫生, 张琴, 熊蔡华. 截瘫助行外骨骼研究综述: 从拟人设计依据到外骨骼研究现状[J]. 机器人, 2021, 43(5): 585-605.

    CHEN Y S, ZHANG Q, XIONG C H. From anthropomorphic design basis to exoskeleton research status: A review on walking assist exoskeletons for paraplegics[J]. Robot, 2021, 43(5): 585-605(in Chinese).
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  93
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-09
  • 录用日期:  2022-11-18
  • 网络出版日期:  2022-11-29
  • 整期出版日期:  2024-07-18

目录

    /

    返回文章
    返回
    常见问答