留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流动拓扑对液体射流失稳与雾化的影响

杨立军 黄东骐 韩旺 李敬轩 富庆飞

杨立军, 黄东骐, 韩旺, 等 . 流动拓扑对液体射流失稳与雾化的影响[J]. 北京航空航天大学学报, 2022, 48(9): 1757-1766. doi: 10.13700/j.bh.1001-5965.2022.0608
引用本文: 杨立军, 黄东骐, 韩旺, 等 . 流动拓扑对液体射流失稳与雾化的影响[J]. 北京航空航天大学学报, 2022, 48(9): 1757-1766. doi: 10.13700/j.bh.1001-5965.2022.0608
YANG Lijun, HUANG Dongqi, HAN Wang, et al. Influence of flow topology on instability and atomization of liquid jets[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1757-1766. doi: 10.13700/j.bh.1001-5965.2022.0608(in Chinese)
Citation: YANG Lijun, HUANG Dongqi, HAN Wang, et al. Influence of flow topology on instability and atomization of liquid jets[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1757-1766. doi: 10.13700/j.bh.1001-5965.2022.0608(in Chinese)

流动拓扑对液体射流失稳与雾化的影响

doi: 10.13700/j.bh.1001-5965.2022.0608
基金项目: 

国家自然科学基金 11922201

国家自然科学基金 11872091

国家自然科学基金 11927802

国家自然科学基金 U1837211

详细信息
    通讯作者:

    富庆飞,E-mail: fuqingfei@buaa.edu.cn

  • 中图分类号: V221+.3; TB553

Influence of flow topology on instability and atomization of liquid jets

Funds: 

National Natural Science Foundation of China 11922201

National Natural Science Foundation of China 11872091

National Natural Science Foundation of China 11927802

National Natural Science Foundation of China U1837211

More Information
  • 摘要:

    在大推力液体火箭发动机燃烧过程中,推进剂射流失稳与雾化是起始环节,会对后续蒸发与燃烧等过程产生显著影响。尽管前人做过很多研究,但对湍流射流雾化机理的认知还存在盲区。基于此通过流动拓扑理论来揭示湍流液体平面射流的雾化机理。采用直接数值模拟方法对静止空气环境下的液体平面射流雾化过程进行了高分辨率数值模拟,分析了流场中不同拓扑结构与气液界面曲率的相互影响,阐明了流动拓扑对液体平面射流雾化的影响机制。研究发现,所有流动拓扑结构都有助于产生压缩应变率和拉伸应变率,其中不稳定焦点结构(UFC)拓扑结构对流场应变率的影响最大;在流动拓扑结构影响下,液体体积分数等值面的曲率与应变呈现负相关关系。另外,UFC主要产生拉伸应变率,而其余流动拓扑结构主要产生压缩应变率。研究结果表明: 射流雾化过程主要受到UFC拓扑结构的影响,UFC会促进气液界面产生较大的拉伸应变率,进而促进片状或管状结构液体结构生成,从而引起液体射流破碎。

     

  • 图 1  湍流液体平面射流算例设置

    Figure 1.  Turbulent liquid plane jet arithmetic setup

    图 2  射流气液界面的演化

    Figure 2.  Evolution of jet gas-liquid interface

    图 3  不同拓扑区域分布示意图

    Figure 3.  Different topology area distribution diagram

    图 4  使用平均曲率和高斯曲率对等值面结构进行分类[11]

    Figure 4.  Classification of structure of equivalence surface using mean curvature and Gaussian curvature[11]

    图 5  第2、第3张量不变量的联合概率密度分布

    Figure 5.  Joint probability density function of the second and the third tensor invariance

    图 6  图 5在原点附近的放大图

    Figure 6.  Fig. 5 enlarged view near origin point

    图 7  不同时刻下应变率在Q-R平面内的条件平均分布

    Figure 7.  Conditional average distribution of strain rate in Q-R plane in different moments

    图 8  不同等值面应变率在Q-R平面内的条件平均分布

    Figure 8.  Conditional average distribution of strain rate in Q-R plane on different iso-surfaces

    图 9  不同等值面上的κg-κm联合概率密度分布

    Figure 9.  Joint probability density distribution of κg-κm on different equivalence sufales

    图 10  不同时刻下整个流场的κg-κm联合概率密度分布

    Figure 10.  Joint probability density distribution of κg-κm for whole flow field at different moments

    图 11  不同拓扑区域内的应变率概率密度分布

    Figure 11.  Probability density distribution of strain rate in different topological regions

    图 12  不同拓扑区域内的平均曲率概率密度分布

    Figure 12.  Mean curvature probability density distribution in different topological regions

    图 13  整个流场中应变率与平均曲率的联合概率密度函数分布

    Figure 13.  Joint probability density function distribution of strain and mean curvature over the entire flow field

  • [1] DESJARDINS O, MCCASLIN J, OWKES M, et al. Direct numerical and large-eddy simulation of primary atomization in complex geometries[J]. Atomization and Sprays, 2013, 23(11): 1001-1048. doi: 10.1615/AtomizSpr.2013007679
    [2] SUSSMAN M, SMEREKA P, OSHER S. A level set approach for computing solutions to incompressible two-phase flow[J]. Journal of Computational Physics, 1994, 114 (1): 146-159. doi: 10.1006/jcph.1994.1155
    [3] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39 (1): 201-225. doi: 10.1016/0021-9991(81)90145-5
    [4] LEBOISSETIER A, ZALESKI S. Direct numerical simulation of the atomization of liquid jet[C]//Proceedings of the ILASS-Europe, 2001: 2-6.
    [5] KLEIN M. Directed numerical simulation of a spatially developing water sheet at moderate Reynolds number[J]. International Journal of Heat and Fluid Flow, 2005, 26(5): 722-731. doi: 10.1016/j.ijheatfluidflow.2005.01.003
    [6] SANDER W, WEIGAND B. Direct numerical simulation and analysis of instability enhancing parameters in liquid sheets at moderate Reynolds numbers[J]. Physics of Fluids, 2008, 20(5): 053301. doi: 10.1063/1.2909661
    [7] MÉNARD T, TANGUY S, BERLEMONT A. Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet[J]. International Journal of Multiphase Flow, 2007, 33(5): 510-524. doi: 10.1016/j.ijmultiphaseflow.2006.11.001
    [8] DESJARDINS O, PITSCH H. Detailed numerical investigation of turbulent atomization of liquid jets[J]. Atomization and Sprays, 2010, 20(4): 311-336. doi: 10.1615/AtomizSpr.v20.i4.40
    [9] SHINJO J, UMEMURA A. Simulation of liquid jet primary breakup: Dynamics of ligament and droplet formation[J]. International Journal of Multiphase Flow, 2010, 36(7): 513-532. doi: 10.1016/j.ijmultiphaseflow.2010.03.008
    [10] PERRY A E, CHONG M S. A description of eddying motions and flow patterns using critical-point concepts[J]. Annual Review of Fluid Mechanics, 1987, 19(1): 125-155. doi: 10.1146/annurev.fl.19.010187.001013
    [11] CHONG M S, PERRY A E, CANTWELL B J. A general classification of three-dimensional flow fields[J]. Physics of Fluids, 1990, 2(5): 765-777. doi: 10.1063/1.857730
    [12] CHONG M S, SORIA J, PERRY A E, et al. Turbulence structures of wall-bounded shear flows found using DNS data[J]. Journal of Fluid Mechanics, 1998, 357: 225-247. doi: 10.1017/S0022112097008057
    [13] ELSINGA G E, MARUSIC I. Universal aspects of small-scale motions in turbulence[J]. Journal of Fluid Mechanics, 2010, 662: 514-539. doi: 10.1017/S0022112010003381
    [14] HASSLBERGER J, KLEIN M, CHAKRABORTY N. Local flow topology analysis applied to bubble-induced turbulence[C]//12th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements. Montpellier, 2018: 270-290.
    [15] WATANABE T, SAKAI Y, NAGATA K, et al. Vortex stretching and compression near the turbulent/non-turbulent interface in a planar jet[J]. Journal of Fluid Mechanics, 2014, 758: 754-785. doi: 10.1017/jfm.2014.559
    [16] JOSEF H, SEBASTIAN K, MARKUS K, et al. Flow topologies in primary atomization of liquid jets: A direct numerical simulation analysis[J]. Journal of Fluid Mechanics, 2019, 859: 819-838. doi: 10.1017/jfm.2018.845
    [17] HAN W, ARNE S, FELIX D, et al. Influence of flow topology and scalar structure on flame-tangential diffusion in turbulent non-premixed combustion[J]. Combustion and Flame, 2019, 206: 21-36. doi: 10.1016/j.combustflame.2019.04.038
    [18] DESJARDINS O, BLANQUART G, BALARAC G, et al. High order conservative finite difference scheme for variable density low Mach number turbulent flows[J]. Journal of Computational Physics, 2008, 227(15): 7125-7159 doi: 10.1016/j.jcp.2008.03.027
    [19] DESJARDINS O, MOUREAU V, PITSCH H. An accurate conservative level set/ghost fluid method for simulating turbulent atomization[J]. Journal of Computational Physics, 2008, 227(18): 8395-8416. doi: 10.1016/j.jcp.2008.05.027
  • 加载中
图(13)
计量
  • 文章访问数:  432
  • HTML全文浏览量:  106
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-11
  • 录用日期:  2022-08-14
  • 网络出版日期:  2022-08-19

目录

    /

    返回文章
    返回
    常见问答