留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞行过程中头盔对飞行员颈部损伤的影响

王丽珍 刘景龙 赵彦鹏 卜伟平 柳松杨 樊瑜波

王丽珍, 刘景龙, 赵彦鹏, 等 . 飞行过程中头盔对飞行员颈部损伤的影响[J]. 北京航空航天大学学报, 2022, 48(9): 1818-1826. doi: 10.13700/j.bh.1001-5965.2022.0609
引用本文: 王丽珍, 刘景龙, 赵彦鹏, 等 . 飞行过程中头盔对飞行员颈部损伤的影响[J]. 北京航空航天大学学报, 2022, 48(9): 1818-1826. doi: 10.13700/j.bh.1001-5965.2022.0609
WANG Lizhen, LIU Jinglong, ZHAO Yanpeng, et al. Effect of helmet on neck injury of pilots in flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1818-1826. doi: 10.13700/j.bh.1001-5965.2022.0609(in Chinese)
Citation: WANG Lizhen, LIU Jinglong, ZHAO Yanpeng, et al. Effect of helmet on neck injury of pilots in flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1818-1826. doi: 10.13700/j.bh.1001-5965.2022.0609(in Chinese)

飞行过程中头盔对飞行员颈部损伤的影响

doi: 10.13700/j.bh.1001-5965.2022.0609
基金项目: 

国家自然科学基金 11822201

空军军医大学飞行人员效能提升计划 2019ZTA04

详细信息
    通讯作者:

    樊瑜波, E-mail: yubofan@buaa.edu.cn

  • 中图分类号: R318.01; TP319.9

Effect of helmet on neck injury of pilots in flight

Funds: 

National Natural Science Foundation of China 11822201

Air Force Medical University Effectiveness Improvement Plan for Flight Personnel 2019ZTA04

More Information
  • 摘要:

    为研究飞行过程中不同头盔对飞行员颈部损伤的影响,基于头颈部多刚体动力学模型,对急转弯及稳定盘旋飞行工况下4种头盔情况开展了动力学分析。得到了不同头盔作用下颈部肌肉力、椎间力、力矩及颈部损伤指数Nij的变化规律,对不同头盔作用下的颈部损伤风险进行了评估。结果表明:所建立的头颈部模型与实验结果较为吻合,可以用来进行仿真模拟分析;相同飞行工况下,B头盔的佩戴使得头部质心前移,增加了颈部前屈时斜方肌的肌肉力;对于同一颈椎节段,B头盔的轴向压缩力最大,而C头盔导致的后伸力矩最大;在所有的计算工况中,上下颈椎的颈部损伤指数Nij均小于0.5,满足航空领域的安全要求;B头盔和C头盔的质量相近,而B头盔质心位置靠前,C头盔靠后,说明头盔质心的前后位置会对颈部的损伤产生重要影响。研究结果可为飞行员头盔的设计优化及其对颈部损伤的影响提供研究支撑。

     

  • 图 1  多刚体动力学模型及坐标系

    Figure 1.  Multi-body dynamic model and definition of coordinates

    图 2  模型仿真结果与实验数据对比

    Figure 2.  Comparison of simulation results and experimental data

    图 3  飞行中加速度时间曲线

    Figure 3.  Acceleration-time curves in-flight

    图 4  三组肌肉的示意图

    Figure 4.  Schematic diagram of three muscle groups

    图 5  不同头盔工况下的最大肌肉力

    Figure 5.  Maximum muscle force for different helmet conditions

    图 6  相邻椎体间轴向压力和前屈后伸力矩随时间的变化曲线

    Figure 6.  Axial force and flexion/extension moment time curves of adjacent segment

    图 7  急转弯工况Nij随时间的变化曲线

    Figure 7.  Nij time curves under sharp turn condition

    图 8  稳定盘旋工况Nij随时间的变化曲线

    Figure 8.  Nij time curves under steady hover condition

    图 9  Nij的最大值

    Figure 9.  Maximum Nij values

    表  1  头颈部模型的生物仿真度评估

    Table  1.   Biofidelity assessment of head and neck model

    载荷工况 验证变量 区间评估 截面评估 整体得分
    15G前向冲击 x向加速度 0.779 0.833 0.806
    z向加速度 0.429 0.626 0.528
    8G轴向冲击 z向加速度 0.651 0.840 0.726
    10G轴向冲击 z向加速度 0.618 0.864 0.716
    整个模型 0.694
    下载: 导出CSV

    表  2  头部质量特性

    Table  2.   Mass properties of head

    头盔工况 质量/kg 重心位置/m 转动惯量/(kg·m2)
    x z x z
    无头盔 4.16 0.027 0.021 0.018 1 0.023 6
    A头盔 5.16 0.022 0.025 0.031 5 0.035 7
    B头盔 5.75 0.035 0.036 0.056 1 0.053 0
    C头盔 5.80 0.021 0.038 0.043 1 0.050 9
    下载: 导出CSV

    表  3  OC-C1及C7-T1节段的最大轴向力与前屈后伸力矩

    Table  3.   Maximum axial force and flexion/extension moment for OC-C1 and C7-T1 segment

    载荷形式 临界值 计算工况 急转弯工况 稳定盘旋工况
    OC-C1 C7-T1 OC-C1 C7-T1 OC-C1 C7-T1
    轴向力
    (压缩力/
    拉伸力)/N
    4 000/-4 170 4 000/-4 170 无头盔 561.65/-0.3 850.4/-0.3 447.4/0 709.4/0
    A头盔 574.7/-0.4 758.6/-0.4 476.9/0 626.8/0
    B头盔 740.7/-0.4 1 141.6/-0.5 635.3/0 944.0/0
    C头盔 643.8/-0.4 831.4/-0.5 534.7/0 687.4/0
    前屈后伸力矩
    (前屈力矩/后伸
    力矩)/(N·m)
    190/-96 380/-192 无头盔 16.2/-0.3 45.0/-0.8 12.5/0 32.7/-0.2
    A头盔 7.8/-23.8 0.1/-68.2 3.7/-17.6 0.3/-53.9
    B头盔 28.1/-0.4 72.2/-1.0 20.6/0 53.8/-0.4
    C头盔 7.0/-29.9 0.1/-80.1 3.7/-23.1 0.3/-64.0
    下载: 导出CSV

    表  4  OC-C1和C7-T1节段Nij临界值的选取

    Table  4.   Nij critical intercept values for OC-C1 and C7-T1 segment

    Nij临界值 OC-C1 C7-T1
    轴向拉伸力/N 6 780 6 780
    轴向压缩力/N 6 200 6 200
    前屈力矩/(N·m) 305 610
    后伸力矩/(N·m) 133 266
    下载: 导出CSV
  • [1] HONKANEN T, SOVELIUS R, MÄNTYSAARI M, et al. +Gz exposure and spinal injury-induced flight duty limitations[J]. Aerospace Medicine and Human Performance, 2018, 89(6): 522-556.
    [2] RICHES A, SPATFORD W, WICHALLS J, et al. A systematic review and meta-analysis about the prevalence of neck pain in fast jet pilots[J]. Aerospace Medicine and Human Performance, 2019, 90(10): 882-890. doi: 10.3357/AMHP.5360.2019
    [3] LANGE B, TORP-SVENDSEN J, TOFT P. Neck pain among fighter pilots after the introduction of the JHMCS helmet and NVG in their environment[J]. Aviation Space and Environmental Medicine, 2011, 82(5): 559-563. doi: 10.3357/ASEM.2935.2011
    [4] WAGSTAFF A S, JAHR K I, RODSKIER S. +Gz-induced spinal symptoms in fighter pilots: Operational and individual associated factors[J]. Aviation Space and Environmental Medicine, 2012, 83(11): 1092-1096. doi: 10.3357/ASEM.3146.2012
    [5] 柳松杨, 丛红, 王鹤, 等. 军机飞行员的颈部损伤研究[J]. 医用生物力学, 2010, 25(4): 262-265. doi: 10.3871/j.1004-7220.2010.4.265.

    LIU S Y, CONG H, WANG H, et al. Study on neck injuries in military pilots[J]. Journal of Medical Biomechanics, 2010, 25(4): 262-265(in Chinese). doi: 10.3871/j.1004-7220.2010.4.265.
    [6] POUSETTE M W, MARTIRE R L, LINDER J, et al. Neck muscle strain in air force pilots wearing night vision goggles[J]. Aerospace Medicine and Human Performance, 2016, 87(11): 928-932. doi: 10.3357/AMHP.4579.2016
    [7] ANDERSEN H T. Neck injury sustained during exposure to high-G forces in the F16b[J]. Aviation Space and Environmental Medicine, 1988, 59(4): 356-358.
    [8] KESKIMOLO T, PERNU J, KARPPINEN J, et al. Degenerative cervical spine changes among early career fighter pilots: A 5-year follow-up[J/OL]. BMJ Military Health, 2021(2021-06-15)[2022-07-01]. https://pubmed.ncbi.nlm.nih.gov/34131064/.
    [9] MANEN O, CLÉMENT J, BISCONTE S, et al. Spine injuries related to high-performance aircraft ejections: A 9-year retrospective study[J]. Aviation Space and Environmental Medicine, 2014, 85(1): 66-70. doi: 10.3357/ASEM.3639.2014
    [10] CHUMBLEY E M, STOLFI A, MCEACHEN J C. Risk factors for cervical pain in F-15c pilots[J]. Aerospace Medicine and Human Performance, 2017, 88(11): 1000-1007. doi: 10.3357/AMHP.4848.2017
    [11] HARRISON M F, FORDE K A, ALBERT W J, et al. Posture and helmet load influences on neck muscle activation[J]. Aerospace Medicine and Human Performance, 2016, 87(1): 48-53. doi: 10.3357/AMHP.4301.2016
    [12] TUCKER B, NETTO K, HAMPSON G, et al. Predicting neck pain in royal Australian air force fighter pilot[J]. Military Medicine, 2012, 177(4): 444-450. doi: 10.7205/MILMED-D-11-00256
    [13] SHIRI R, FRILANDER H, SAINIO M, et al. Cervical and lumbar pain and radiological degeneration among fighter pilots: A systematic review and meta-analysis[J]. Occupational and Environmental Medicine, 2015, 72(2): 145-150. doi: 10.1136/oemed-2014-102268
    [14] SOVELIUS R, OKSA J, RINTALA H, et al. Neck muscle strain when wearing helmet and NVG during acceleration on a trampoline[J]. Aviation Space and Environmental Medicine, 2008, 79(2): 112-116. doi: 10.3357/ASEM.2130.2008
    [15] 吴明磊, 马春生, 刘威, 等. 弹射时装显示器头盔对人体的生物力学效应[J]. 中华航空航天医学杂志, 2005, 16(4): 267-271. doi: 10.3760/cma.j.issn.1007-6239.2005.04.007

    WU M L, MA C S, LIU W, et al. Biodynamic effect of helmet with mounted display system on human during ejection[J]. Chinese Journal of Aerospace Medicine, 2005, 16(4): 267-271(in Chinese). doi: 10.3760/cma.j.issn.1007-6239.2005.04.007
    [16] 贾晓红, 茆军兵, 王人成, 等. 头盔质量和质心对军机飞行员颈部肌力的影响[J]. 医用生物力学, 2012, 27(4): 416-420. doi: 10.3871/j.1004-7220.2012.4.420.

    JIA X H, MAO J B, WANG R C, et al. Effect of helmet mass and mass center on neck muscle strength in military pilots[J]. Journal of Medical Biomechanics, 2012, 27(4): 416-420(in Chinese). doi: 10.3871/j.1004-7220.2012.4.420.
    [17] MATHYS R, FERGUSON S J. Simulation of the effects of different pilot helmets on neck loading during air combat[J]. Journal of Biomechanics, 2012, 45(14): 2362-2367. doi: 10.1016/j.jbiomech.2012.07.014
    [18] 包佳仪, 王兴伟, 周前祥, 等. 阻拦着舰过程中飞行员颈部的损伤分析与预测[J]. 北京航空航天大学学报, 2019, 45(3): 499-507. doi: 10.13700/j.bh.1001-5965.2018.0404

    BAO J Y, WANG X W, ZHOU Q X, et al. Analysis and prediction of neck injury of pilots during carrier aircraft arrest deck-landing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 499-507(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0404
    [19] WANG Y W, WANG L Z, LIU S Y, et al. A two-step procedure for coupling development and usage of a pair of human neck models[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2018, 21(5): 413-426. doi: 10.1080/10255842.2018.1471468
    [20] DE JAGER M K J. Mathematical head-neck models for acceleration impacts[D]. Eindhoven: Eindhoven University of Technology, 1996.
    [21] DENG Y C, GOLDSMITH W. Response of a human head/neck/upper-torso replica to dynamic loading-Ⅱ. Analytical/numerical model[J]. Journal of Biomechanics, 1987, 20(5): 487-497. doi: 10.1016/0021-9290(87)90249-1
    [22] HORST M. Human head neck response in frontal, lateral and rear end impact loading[D]. Eindhoven: Eindhoven University of Technology, 2002.
    [23] PANZER M B, FICE J B, CRONIN D S. Cervical spine response in frontal crash[J]. Medical Engineering and Physics, 2011, 33(9): 1147-1159. doi: 10.1016/j.medengphy.2011.05.004
    [24] THUNNISSEN J, WISMANS J, EWING C, et al. Human volunteer head-neck response in frontal flexion: A new analysis[J]. Stapp Car Crash Journal, 1995, 39: 3065-3086. https://www.sae.org/publications/technical-papers/content/952721/
    [25] JACOB B P, JEFFREY T S, JESSICA A W, et al. Development and evaluation of a finite element model of the THOR for occupant protection of spaceflight crewmembers[J]. Accident Analysis and Prevention, 2015, 82: 244-256. doi: 10.1016/j.aap.2015.05.002
    [26] GEHRE C, GADES H, WERNICKE P. Objective rating of signals using test and simulation responses[C]//Proceeding of 21st International Technical Conference on the Enhanced Safety of Vehicles, 2009.
    [27] 柯鹏, 诸斌, 柳松杨, 等. 拦阻着舰过程中不同百分位人体颈部损伤风险的差异对比[J]. 医用生物力学, 2018, 33(5): 383-389. https://www.cnki.com.cn/Article/CJFDTOTAL-YISX201805001.htm

    KE P, ZHU B, LIU S Y, et al. Differences of neck injury risks for different dummies during arrested landing[J]. Journal of Medical Biomechanics, 2018, 33(5): 383-389(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YISX201805001.htm
    [28] MERTZ H J, IRWIN A L, PRASAD P. Biomechanical and scaling bases for frontal and side impact injury assessment reference values[J]. Stapp Car Crash Journal, 2003, 47: 155-188. https://www.researchgate.net/profile/Priya-Prasad-8/publication/6701661_Biomechanical_and_scaling_bases_for_frontal_and_side_impact_injury_assessment_reference_values/links/54c7b1000cf238bb7d0b05fe/Biomechanical-and-scaling-bases-for-frontal-and-side-impact-injury-assessment-reference-values.pdf?origin=publication_detail
    [29] EPPINGER R, SUN E, BANDAK F, et al. Development of improved injury criteria for the assessment of advanced automotive restraint systems-Ⅱ: 1999-6407-5[R]. Washington, D.C. : NHTSA, 1999.
    [30] WHITE N A, MORENO D P, GAYZIK F S, et al. Cross-sectional neck response of a total human body Fe model during simulated frontal and side automobile impacts[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2015, 18(3): 293-315. doi: 10.1080/10255842.2013.792918
    [31] PARR J C, MILLER M E, PELLETTIERE J A, et al. Neck injury criteria formulation and injury risk curves for the ejection environment: A pilot study[J]. Aviation Space and Environmental Medicine, 2013, 84(12): 1240-1248. doi: 10.3357/ASEM.3722.2013
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  288
  • HTML全文浏览量:  89
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-12
  • 录用日期:  2022-08-02
  • 网络出版日期:  2022-08-11

目录

    /

    返回文章
    返回
    常见问答