留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高马赫数内埋武器分离特性数值模拟研究

陈兵 罗磊 蒋安林 吴晓军 张培红 贾洪印

陈兵,罗磊,蒋安林,等. 高马赫数内埋武器分离特性数值模拟研究[J]. 北京航空航天大学学报,2024,50(7):2113-2122 doi: 10.13700/j.bh.1001-5965.2022.0627
引用本文: 陈兵,罗磊,蒋安林,等. 高马赫数内埋武器分离特性数值模拟研究[J]. 北京航空航天大学学报,2024,50(7):2113-2122 doi: 10.13700/j.bh.1001-5965.2022.0627
CHEN B,LUO L,JIANG A L,et al. Numerical simulation of separation characteristics for internally buried weapon at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2113-2122 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0627
Citation: CHEN B,LUO L,JIANG A L,et al. Numerical simulation of separation characteristics for internally buried weapon at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2113-2122 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0627

高马赫数内埋武器分离特性数值模拟研究

doi: 10.13700/j.bh.1001-5965.2022.0627
基金项目: 国家数值风洞工程(NNW)项目
详细信息
    通讯作者:

    E-mail:zph2s@sina.com

  • 中图分类号: V221.3;TB553

Numerical simulation of separation characteristics for internally buried weapon at high Mach number

Funds: National Numerical Windtunnel (NNW) Project
More Information
  • 摘要:

    高马赫数(Ma>2)武器舱剪切层和激波更强,其流动特性与通常的亚、跨、超声速武器舱也有所不同,从而可能导致内埋武器的分离特性也不同。基于非结构混合网格流场解算器NNW-FlowStar,在前期针对高马赫数空腔流动模拟建立的改进HLLE++格式和自适应混合网格技术的基础上,采用数值模拟手段对比分析了Ma=4和Ma=2时的内埋武器分离特性,研究了环状板、横柱、锯齿和圆柱阵列等不同前缘流动控制措施对高马赫数(Ma=4)武器分离特性的影响,为高马赫数内埋武器的安全分离方案设计提供指导。研究表明:高马赫数(Ma=4)时,由于武器舱流动特性和武器舱前缘激波的激波角的不同,导致起始时刻内埋武器与武器舱之间的通道效应和分离过程的激波干扰不同,使得高马赫数(Ma=4)时内埋武器的姿态角和俯仰力矩与马赫数为2时差异较大;采取前缘扰流措施后,内埋武器的抬头趋势有所减弱,偏航角有所减小,有利于导弹的安全分离。

     

  • 图 1  空腔附近对称面网格

    Figure 1.  Grid of the cavity symmetry plane

    图 2  空腔底部压力分布比较(Ma=2.86)

    Figure 2.  Comparison of pressure distribution of the bottom of cavity floor (Ma=2.86)

    图 3  空腔对称面流线和密度分布

    Figure 3.  Streamlines and density distributions on symmetry face

    图 4  空腔底部压力分布比较(Ma=0.9)

    Figure 4.  Comparison of pressure distribution of the bottom of cavity floor (Ma=0.9)

    图 5  WPFS模型外形

    Figure 5.  Geometry of WPSF model

    图 6  表面网格和舵面局部网格分布

    Figure 6.  Distribution of surface grid and local grid

    图 7  外挂物质心位移、姿态角对比

    Figure 7.  Attitude angle comparison of、 heart displacement external hanging objects

    图 8  内埋弹舱附近重叠网格

    Figure 8.  Overset grid near the weapon bay

    图 9  基于网格自适应技术的分离投放模拟过程

    Figure 9.  Progress of weapon separation simulation based on the mesh adaptive technique

    图 10  Ma=2和Ma=4时导弹位移对比

    Figure 10.  Missile displacement comparison for Ma=2 and Ma=4

    图 11  Ma=2和Ma=4时俯仰姿态角对比

    Figure 11.  Pitch angle comparison for Ma=2 and Ma=4

    图 12  Ma=2和Ma=4时俯仰力矩对比

    Figure 12.  Pitching moment comparison for Ma=2 and Ma=4

    图 13  t=0.2 s,Ma=2和Ma=4时马赫数压力云图对比

    Figure 13.  Mach number and pressure comparison contour at Ma=2 and Ma=4 for t=0.2 s

    图 14  t=0.26 s,Ma=2和Ma=4时马赫数压力云图对比

    Figure 14.  Mach number and pressure contour comparison at Ma=2 and Ma=4 for t=0.26 s

    图 15  t=0.38 s,Ma=2和Ma=4时马赫数压力云图对比

    Figure 15.  Mach number and pressure contour comparison at Ma=2 and Ma=4 for t=0.38 s

    图 16  不同流动控制措施表面网格

    Figure 16.  Local grid of different flow control methods

    图 17  不同控制措施下导弹位移对比

    Figure 17.  Comparison of missile displacements under different control measures

    图 18  不同控制措施下姿态角对比

    Figure 18.  Comparison of Attitude angle for different control methods

    表  1  空腔模型计算参数

    Table  1.   Calculation parameters of cavity model

    Ma 攻角α/(°) 侧滑角β/(°) 来流静压P/Pa 来流静温T/K
    2.86 0 0 3114.2 123.3
    下载: 导出CSV

    表  2  内埋武器质量特性

    Table  2.   Quality characteristics of internally buried weapon

    质量/kg Ix/(kg·m2 Iy/(kg·m2 Iz/(kg·m2
    1 150.0 48 1 960 1 960
    下载: 导出CSV
  • [1] 常超, 丁海河. 内埋弹射武器机弹安全分离技术综述[J]. 现代防御技术, 2012, 40(5): 67-74. doi: 10.3969/j.issn.1009-086x.2012.05.013

    CHANG C, DING H H. Review on missile store safety separation technology of embedded ejection weapons[J]. Modern Defence Technology, 2012, 40(5): 67-74(in Chinese). doi: 10.3969/j.issn.1009-086x.2012.05.013
    [2] CLARK R. Evaluation of F-111 weapon bay aero-acoustic and weapon separation improvement techniques[R]. AFFDL: Engineering Physics, 1979: 2-15.
    [3] BAKER W, KEEN S, MORGRET C. Validation of weapon separation predictions using F/A-22 flight test results[C]// USAF Developmental Test and Evaluation Summit. Reston: AIAA, 2004: 6803.
    [4] ATWOOD C A. Computation of a controlled store separation from a cavity[J]. Journal of Aircraft, 1995, 32(4): 846-852.
    [5] CAVALLO P, LEE R, HOSANGADI A, et al. Simulation of weapons bay store separation flowfields using unstructured grids[C]// 17th Applied Aerodynamics Conference. Reston: AIAA, 1999: 3188.
    [6] SICKLES W, HAND T, MORGRET C, et al. High-fidelity, time-accurate CFD store separation simulations from a B-1B bay with comparisons to quasi-steady engineering methods[C]// 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008: 186.
    [7] SAHOO D, ANNASWAMY A, ALVI F. Microjets-based active control of store trajectory in a supersonic cavity using a low-order model[C]// 11th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2005: 3097.
    [8] JOHNSON R, STANEK M, GROVE J. Store separation trajectory deviations due to unsteady weapons bay aerodynamics[C]// 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008: 188.
    [9] KIM D H, CHOI J H, KWON O J. Detached eddy simulation of weapons bay flows and store separation[J]. Computers & Fluids, 2015, 121: 1-10.
    [10] WESTMORELAND W. Trajectory variation due to an unsteady flow-field[C]// Proceedings of the 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009: 550.
    [11] 吴继飞. 内埋武器舱系统气动特性研究[D]. 绵阳: 中国空气动力研究与发展中心, 2012.

    WU J F. Investigation on aerodynamic characteristics of internal weapons bay system[D]. Mianyang: China Aerodynamics Research and Development Center, 2012(in Chinese).
    [12] 薛飞, 金鑫, 王誉超, 等. 内埋武器高速投放风洞试验技术[J]. 航空学报, 2017, 38(1): 120114.

    XUE F, JIN X, WANG Y C, et al. Wind tunnel test technique on high speed weapon delivery from internal weapons bay[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 120114(in Chinese).
    [13] 杨俊, 李骞, 谢云恺, 等. 超声速内埋武器分离数值研究[J]. 弹箭与制导学报, 2015, 35(4): 171-174.

    YANG J, LI Q, XIE Y K, et al. Numerical studies on store separation from a weapon bay at supersonic speed[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(4): 171-174(in Chinese).
    [14] 朱收涛, 曹林平, 封普文, 等. 平飞时内埋导弹弹射分离仿真与研究[J]. 电光与控制, 2012, 19(9): 67-71,75. doi: 10.3969/j.issn.1671-637X.2012.09.016

    ZHU S T, CAO L P, FENG P W, et al. Simulation of missile separation from internal weapon bay[J]. Electronics Optics & Control, 2012, 19(9): 67-71,75(in Chinese). doi: 10.3969/j.issn.1671-637X.2012.09.016
    [15] 冯必鸣, 聂万胜, 车学科, 等. 安装角度对内埋式导弹分离特性的影响[J]. 空气动力学学报, 2010, 28(6): 672-675. doi: 10.3969/j.issn.0258-1825.2010.06.010

    FENG B M, NIE W S, CHE X K, et al. Effect of fixing angle to separation characteristics of internal store[J]. Acta Aerodynamica Sinica, 2010, 28(6): 672-675(in Chinese). doi: 10.3969/j.issn.0258-1825.2010.06.010
    [16] 雷娟棉, 牛健平, 王锁柱, 等. 初始分离条件对航弹与载机分离安全性影响的数值模拟研究[J]. 兵工学报, 2016, 37(2): 357-366. doi: 10.3969/j.issn.1000-1093.2016.02.023

    LEI J M, NIU J P, WANG S Z, et al. Numerical simulation about the effect of initial separation condition on safety of aerial bomb separated from an aircraft[J]. Acta Armamentarii, 2016, 37(2): 357-366(in Chinese). doi: 10.3969/j.issn.1000-1093.2016.02.023
    [17] 李骞, 杨俊, 谢云恺, 等. 超声速内埋武器不同分离方式分析[J]. 航空计算技术, 2014, 44(5): 69-72. doi: 10.3969/j.issn.1671-654X.2014.05.017

    LI Q, YANG J, XIE Y K, et al. Simulation of different separation modes of internal weapon at supersonic speed[J]. Aeronautical Computing Technique, 2014, 44(5): 69-72(in Chinese). doi: 10.3969/j.issn.1671-654X.2014.05.017
    [18] 郭亮, 王纯, 叶斌, 等. 采用流动控制的超声速内埋物投放特性研究[J]. 航空学报, 2015, 36(6): 1752-1761. doi: 10.7527/S1000-6893.2014.0325

    GUO L, WANG C, YE B, et al. Investigation on characteristics of store release from internal bay in supersonic flow under flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6): 1752-1761(in Chinese). doi: 10.7527/S1000-6893.2014.0325
    [19] 刘瑜. 内埋式弹舱武器发射分离过程研究[D]. 南京: 南京航空航天大学, 2010.

    LIU Y. Fluid dynamics analysis on missile launching and separating from weapon bay[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010(in Chinese).
    [20] 张培红, 王明, 邓有奇, 等. 武器分离及舱门开启过程数值模拟研究[J]. 空气动力学学报, 2013, 31(3): 277-281,293.

    ZHANG P H, WANG M, DENG Y Q, et al. Numerical simulation of store separation and door operation[J]. Acta Aerodynamica Sinica, 2013, 31(3): 277-281,293(in Chinese).
    [21] 陈坚强, 吴晓军, 张健, 等. FlowStar: 国家数值风洞(NNW)工程非结构通用CFD软件[J]. 航空学报, 2021, 42(9): 625739.

    CHEN J Q, WU X J, ZHANG J, et al. FlowStar: general unstructured-grid CFD software for National Numerical Windtunnel (NNW) Project[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625739(in Chinese).
    [22] 张培红, 罗磊, 贾洪印, 等. HLLE++格式在高马赫数空腔流动模拟中的应用[J]. 计算力学学报, 2022, 39(6): 778-785.

    ZHANG P H, LUO L, JIA H Y, et al. Application of HLLE++ scheme in the simulation of high Mach number cavity flow[J]. Chinese Journal of Computational Mechanics, 2022, 39(6): 778-785.
    [23] 张培红, 唐银, 唐静, 等. 基于自适应混合网格的高马赫数空腔流动模拟[J]. 北京航空航天大学学报, 2023, 49(6): 1311-1318.

    ZHANG P H, TANG Y, TANG J, et al. Simulation of cavity flow at high Mach number based on adaptive unstructured hybrid mesh[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(6): 1311-1318(in Chinese).
    [24] 崔鹏程, 唐静, 李彬, 等. 基于超网格的重叠网格守恒插值方法[J]. 航空学报, 2018, 39(3): 121569.

    CUI P C, TANG J, LI B, et al. A conservative interpolation method for overset mesh via super mesh[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(3): 121569(in Chinese).
    [25] STALLINGS R L, WILCOX F J. Experimental cavity pressure distributions at supersonic speeds: NASA-TP-2683[R]. Washington: NASA, 1987: 1-79.
    [26] HEIM E R. CFD wing /pylon /finned store mutual inter-ference wind tunnel experiment[R]. Tennessee: Arnold Engineering Development Center, 1991.
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  812
  • HTML全文浏览量:  81
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-22
  • 录用日期:  2022-08-26
  • 网络出版日期:  2023-07-18
  • 整期出版日期:  2024-07-18

目录

    /

    返回文章
    返回
    常见问答