留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于领域自适应的变工况轴承故障诊断

曹洁 尹浩楠 雷晓刚 王进花

曹洁,尹浩楠,雷晓刚,等. 基于领域自适应的变工况轴承故障诊断[J]. 北京航空航天大学学报,2024,50(8):2382-2390 doi: 10.13700/j.bh.1001-5965.2022.0631
引用本文: 曹洁,尹浩楠,雷晓刚,等. 基于领域自适应的变工况轴承故障诊断[J]. 北京航空航天大学学报,2024,50(8):2382-2390 doi: 10.13700/j.bh.1001-5965.2022.0631
CAO J,YIN H N,LEI X G,et al. Bearing fault diagnosis in variable working conditions based on domain adaptation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2382-2390 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0631
Citation: CAO J,YIN H N,LEI X G,et al. Bearing fault diagnosis in variable working conditions based on domain adaptation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2382-2390 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0631

基于领域自适应的变工况轴承故障诊断

doi: 10.13700/j.bh.1001-5965.2022.0631
基金项目: 国家重点研发计划(2020YFB1713600);国家自然科学基金(62063020);甘肃省自然科学基金(20JR5RA463)
详细信息
    通讯作者:

    E-mail:wjh0615@lut.edu.cn

  • 中图分类号: TP277

Bearing fault diagnosis in variable working conditions based on domain adaptation

Funds: National Key Research and Development Program of China (2020YFB1713600); National Natural Science Foundation of China (62063020); Natural Science Foundation of Gansu Province (20JR5RA463)
More Information
  • 摘要:

    针对轴承故障诊断中存在训练样本和测试样本分布不同及各类故障数据不平衡导致故障识别率低的问题,设计了一种基于改进残差网络(ResNet)的领域自适应故障诊断方法。在诊断网络第1层使用多维度卷积结构进行特征提取,得到不同维度的故障特征信息;在领域自适应层采用局部最大平均差异(LMMD)对齐源域和目标域的分布,获取更多细粒度信息;使用类平衡损失函数(CBLoss)解决不平衡数据的训练问题,以Adam优化网络实现故障诊断。实验结果表明,所提方法可在故障样本类别不平衡下有较高的诊断结果。在2个轴承数据集和采集的风力发电机数据上进行实验验证,结果表明,所提方法具有一定的优越性,在数据样本不平衡情况下,诊断性能优于深度神经网络和领域自适应网络等深度迁移学习方法,可作为一种有效的跨工况故障分析方法。

     

  • 图 1  领域自适应图解

    Figure 1.  Domain adaptation diagram

    图 2  残差块结构

    Figure 2.  Residual block structure

    图 3  多维特征提取模块

    Figure 3.  Multidimensional feature extraction module

    图 4  子领域故障诊断模型

    Figure 4.  Sub-domain fault diagnosis model

    图 5  整体故障诊断流程

    Figure 5.  Overall fault diagnosis process

    图 6  美国凯斯西储大学轴承实验台

    Figure 6.  Bearing test bench of American Case Western Reserve University

    图 7  2种损失函数混淆矩阵

    Figure 7.  Confusion matrix of two loss functions

    图 8  帕德伯恩轴承实验台

    1. 电机;2. 测转矩轴;3. 轴承测试模块;4. 飞轮;5. 负载电机。

    Figure 8.  Paderborn bearing test bench

    图 9  不同方法准确率对比

    Figure 9.  Accuracy comparison of different methods

    表  1  残差块参数

    Table  1.   Residual block parameters

    残差块 残差块参数
    Conv1 Conv2
    Block1×2 Conv(3,3,1,16) Conv(3,3,1,32)
    Block2×2 Conv(3,3,1,32) Conv(3,3,1,64)
    Block3×2 Conv(3,3,1,64) Conv(3,3,1,128)
    下载: 导出CSV

    表  2  数据集设置

    Table  2.   Dataset settings

    故障类型 尺寸/cm 训练集数量 测试集数量
    正常 200 150
    滚子故障 2.54 150 100
    5.08 150 100
    7.62 150 100
    内圈故障 2.54 150 100
    5.08 150 100
    7.62 100 50
    外圈故障 2.54 100 50
    5.08 100 50
    7.62 100 50
    下载: 导出CSV

    表  3  不同方法诊断精度

    Table  3.   Diagnostic accuracy of different methods

    方法 准确率/% 平均准确率
    A→B A→C A→D B→A B→C B→D C→A C→B C→D D→A D→B D→C
    JDA[27] 71.3 68.5 70.2 66.8 69.9 73.6 70.4 72.6 71.2 69.1 68.5 73.6 70.5
    LeNet-5 82.1 83.9 79.7 81.5 80.3 84.4 80.3 82.1 81.9 77.6 81.4 83.2 81.5
    D-CORAL[28] 98.4 96.8 88.9 96.5 97.3 95.6 91.3 97.2 98.7 87.6 93.6 95.7 94.8
    DaNN[29] 97.0 97.5 94.4 96.5 98.2 98.6 95.2 97.6 98.1 89.1 96.2 97.2 96.3
    本文方法 99.4 98.8 99.1 99.3 98.5 99.8 98.2 99.1 99.5 98.4 99.7 99.3 99.1
    下载: 导出CSV

    表  4  不同工况详细信息

    Table  4.   Details of different working conditions

    编号 转速/(r·min−1 扭矩/(N·m) 径向负载/N
    0 1500 0.7 1000
    1 900 0.7 1000
    2 1500 0.1 1000
    3 1500 0.7 400
    下载: 导出CSV

    表  5  目标域数据代码

    Table  5.   Target domain data codes

    迁移任务正常内圈故障(OR)外圈故障(IR)
    0-1K002KI04KA04
    0-2K003KI14KA15
    0-3K004KI16KA22
    下载: 导出CSV

    表  6  轴承数据集划分

    Table  6.   Bearing dataset partitioning

    故障类型 训练集数量 测试集数量
    正常 500 300
    内圈损伤 200 100
    外圈损伤 100 50
    下载: 导出CSV

    表  7  目标域数据集划分

    Table  7.   Target domain dataset partitioning

    迁移任务 故障类型
    a-b 故障Ⅰ 故障Ⅱ 故障Ⅲ
    a-c 故障Ⅰ 故障Ⅱ 故障Ⅲ
    下载: 导出CSV

    表  8  风机数据集划分

    Table  8.   Wind turbine dataset partitioning

    故障类型 训练集数量 测试集数量
    故障Ⅰ 200 100
    故障Ⅱ 100 50
    故障Ⅲ 50 25
    下载: 导出CSV

    表  9  风机数据不同方法诊断精度

    Table  9.   Diagnostic accuracy of wind turbine data of different methods

    方法 准确率/%
    a-b a-c
    JDA[27] 70.7 65.6
    LeNet-5 79.4 81.3
    D-CORAL[28] 96.9 95.7
    DaNN[29] 95.8 96.3
    本文方法 98.2 98.4
    下载: 导出CSV
  • [1] JIAO J Y, ZHAO M, LIN J, et al. Hierarchical discriminating sparse coding for weak fault feature extraction of rolling bearings[J]. Reliability Engineering & System Safety, 2019, 184: 41-54.
    [2] LIM D H, KIM K S. Development of deep learning-based detection technology for vortex-induced vibration of a ship’s propeller[J]. Journal of Sound and Vibration, 2022, 520: 116629. doi: 10.1016/j.jsv.2021.116629
    [3] YU L, QU J L, GAO F, et al. A novel hierarchical algorithm for bearing fault diagnosis based on stacked LSTM[J]. Shock and Vibration, 2019, 2019: 2756284.
    [4] JIN T T, YAN C L, CHEN C H, et al. New domain adaptation method in shallow and deep layers of the CNN for bearing fault diagnosis under different working conditions[J]. The International Journal of Advanced Manufacturing Technology, 2023, 124(11): 3701-3712.
    [5] LI H. Deeplearning for natural language processing: Advantages and challenges[J]. National Science Review, 2018, 5(1): 24-26.
    [6] KHAN S, YAIRI T. A review on the application of deep learning in system health management[J]. Mechanical Systems and Signal Processing, 2018, 107: 241-265. doi: 10.1016/j.ymssp.2017.11.024
    [7] WANG J Y, MO Z L, ZHANG H, et al. A deep learning method for bearing fault diagnosis based on time-frequency image[J]. IEEE Access, 2019, 7: 42373-42383.
    [8] HASSAN S M, MAJI A K, JASIŃSKI M, et al. Identification of plant-leaf diseases using CNN and transfer-learning approach[J]. Electronics, 2021, 10(12): 1388.
    [9] PATEL V M, GOPALAN R, LI R N, et al. Visual domain adaptation: Asurvey of recent advances[J]. IEEE Signal Processing Magazine, 2015, 32(3): 53-69. doi: 10.1109/MSP.2014.2347059
    [10] KERMANY D S, GOLDBAUM M, CAI W J, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5): 1122-1131. doi: 10.1016/j.cell.2018.02.010
    [11] 张西宁, 余迪, 刘书语. 基于迁移学习的小样本轴承故障诊断方法研究[J]. 西安交通大学学报, 2021, 55(10): 30-37. doi: 10.7652/xjtuxb202110004

    ZHANG X N, YU D, LIU S Y. Faultdiagnosis method for small sample bearing based on transfer learning[J]. Journal of Xi’an Jiaotong University, 2021, 55(10): 30-37(in Chinese). doi: 10.7652/xjtuxb202110004
    [12] LI F D, CHEN J L, PAN J, et al. Cross-domain learning in rotating machinery fault diagnosis under various operating conditions based on parameter transfer[J]. Measurement Science and Technology, 2020, 31(8): 085104.
    [13] ZHU J, CHEN N, SHEN C Q. A new deep transfer learning method for bearing fault diagnosis under different working conditions[J]. IEEE Sensors Journal, 2020, 20(15): 8394-8402.
    [14] WEN L, GAO L, LI X Y. A new deep transfer learning based on sparse auto-encoder for fault diagnosis[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(1): 136-144. doi: 10.1109/TSMC.2017.2754287
    [15] GUO L, LEI Y G, XING S B, et al. Deep convolutional transfer learning network: A new method for intelligent fault diagnosis of machines with unlabeled data[J]. IEEE Transactions on Industrial Electronics, 2019, 66(9): 7316-7325. doi: 10.1109/TIE.2018.2877090
    [16] CHE C C, WANG H W, NI X M, et al. Domain adaptive deep belief network for rolling bearing fault diagnosis[J]. Computers & Industrial Engineering, 2020, 143: 106427.
    [17] SHAO J J, HUANG Z W, ZHU J M. Transfer learning method based on adversarial domain adaption for bearing fault diagnosis[J]. IEEE Access, 2020, 8: 119421-119430. doi: 10.1109/ACCESS.2020.3005243
    [18] 康守强, 刘旺辉, 王玉静, 等. 基于深度在线迁移的变负载下轴承故障诊断方法[J]. 控制与决策, 2022, 37(6): 1521-1530.

    KANG S Q, LIU W H, WANG Y J, et al. Bearing fault diagnosis method under variable load based on deep online migration[J]. Control and Decision, 2022, 37(6): 1521-1530(in Chinese).
    [19] ZHAO C, LIU G K, SHEN W M, et al. A multi-representation-based domain adaptation network for fault diagnosis[J]. Measurement, 2021, 182: 109650. doi: 10.1016/j.measurement.2021.109650
    [20] WANG X, SHEN C Q, XIA M, et al. Multi-scale deep intra-class transfer learning for bearing fault diagnosis[J]. Reliability Engineering & System Safety, 2020, 202: 107050.
    [21] FU S F, CAI F H, WANG W. Fault diagnosis of photovoltaic array based on SE-ResNet[J]. Journal of Physics: Conference Series, 2020, 1682(1): 012004. doi: 10.1088/1742-6596/1682/1/012004
    [22] GROVER C, TURK N. A novel fault diagnostic system for rolling element bearings using deep transfer learning on bispectrum contour maps[J]. Engineering Science and Technology, an International Journal, 2022, 31: 101049. doi: 10.1016/j.jestch.2021.08.006
    [23] ZOU Y S, LIU Y Z, DENG J L, et al. A novel transfer learning method for bearing fault diagnosis under different working conditions[J]. Measurement, 2021, 171: 108767. doi: 10.1016/j.measurement.2020.108767
    [24] LESSMEIER C, KIMOTHO J K, ZIMMER D, et al. Conditionmonitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data-driven classification[C]//Proceedings of the European Conference of the Prognostics and Health Management Society. ST Roch: PHM Society, 2016: 1-17.
    [25] ZHU Y C, ZHUANG F Z, WANG J D, et al. Deep subdomain adaptation network for image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(4): 1713-1722. doi: 10.1109/TNNLS.2020.2988928
    [26] CUI Y, JIA M L, LIN T Y, et al. Class-balanced loss based on effective number of samples[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 9260-9269.
    [27] WANG Y X, YAN J, YANG Z, et al. A domain adaptive deep transfer learning method for gas-insulated switchgear partial discharge diagnosis[J]. IEEE Transactions on Power Delivery, 2022, 37(4): 2514-2523. doi: 10.1109/TPWRD.2021.3111862
    [28] LI R R, LI S M, XU K, et al. Deep domain adaptation with adversarial idea and coral alignment for transfer fault diagnosis of rolling bearing[J]. Measurement Science and Technology, 2021, 32(9): 094009. doi: 10.1088/1361-6501/abe163
    [29] GHIFARY M, KLEIJN W B, ZHANG M J. Domain adaptive neural networks for object recognition[C]//Proceedings of the Pacific Rim International Conference on Artificial Intelligence. Berlin: Springer, 2014: 898-904.
    [30] LI X D, HU Y, ZHENG J H, et al. Central moment discrepancy based domain adaptation for intelligent bearing fault diagnosis[J]. Neurocomputing, 2021, 429: 12-24. doi: 10.1016/j.neucom.2020.11.063
  • 加载中
图(9) / 表(9)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  83
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-19
  • 录用日期:  2022-09-11
  • 网络出版日期:  2022-09-27
  • 整期出版日期:  2024-08-28

目录

    /

    返回文章
    返回
    常见问答