留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缓冲行走一体式月面探测器性能分析与优化

何天宇 董洋 周士明 赵军鹏 王春洁

何天宇,董洋,周士明,等. 缓冲行走一体式月面探测器性能分析与优化[J]. 北京航空航天大学学报,2024,50(8):2547-2556 doi: 10.13700/j.bh.1001-5965.2022.0634
引用本文: 何天宇,董洋,周士明,等. 缓冲行走一体式月面探测器性能分析与优化[J]. 北京航空航天大学学报,2024,50(8):2547-2556 doi: 10.13700/j.bh.1001-5965.2022.0634
HE T Y,DONG Y,ZHOU S M,et al. Performance analysis and optimization of buffering/walking integrated lunar probe[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2547-2556 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0634
Citation: HE T Y,DONG Y,ZHOU S M,et al. Performance analysis and optimization of buffering/walking integrated lunar probe[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2547-2556 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0634

缓冲行走一体式月面探测器性能分析与优化

doi: 10.13700/j.bh.1001-5965.2022.0634
基金项目: 国家自然科学基金(U2037602)
详细信息
    通讯作者:

    E-mail:zhaojunpeng@buaa.edu.cn

  • 中图分类号: V476.3;TH122

Performance analysis and optimization of buffering/walking integrated lunar probe

Funds: National Natural Science Foundation of China (U2037602)
More Information
  • 摘要:

    针对缓冲行走一体式月面探测器将着陆缓冲与月面行走功能融为一体,导致设计优化困难的问题,提出一种综合考虑缓冲特性和行走特性的性能分析与优化方法。根据月面探测器着陆腿的功能需求,设计了构型为RUP-2RUPS的冗余自由度并联机构,并建立其参数化模型,该构型可通过运动副生效或失效实现缓冲和行走2种功能的构型切换。结合全因子实验方法分析月面探测器的两功能运动学特性与动力学特性,依据月面复杂着陆和行走工况,给出综合优化的目标函数和约束条件。在敏感度分析的基础上,利用随优化过程更新的全工况响应面模型与非劣排序遗传算法,完成月面探测器着陆腿构型参数的优化。所提方法在提高运算效率的同时,保证了每轮优化均能筛选出当前构型的最恶劣着陆工况,并计算其极限值。优化后,最大有效工作空间增加了8.7%,抗翻倒性能最小值提高了4.0%,抗底面触月性能最小值提高了0.2%,整体性能更优。

     

  • 图 1  月面探测器单腿构型与支链参数

    Figure 1.  Single leg configuration and chain parameters of lunar probe

    图 2  着陆腿机构2种工作状态

    Figure 2.  Two working states of landing leg

    图 3  单腿缓冲工作空间

    Figure 3.  Single leg buffering workspace

    图 4  单腿行走工作空间

    Figure 4.  Single leg walking workspace

    图 5  单腿行走最大有效工作空间

    Figure 5.  Maximum effective workspace for single leg walking

    图 6  工况参数定义

    Figure 6.  Landing condition parameters definition

    图 7  缓冲性能仿真分析结果

    Figure 7.  Simulation analysis results of buffering performance

    图 8  优化目标对各构型参数敏感度

    Figure 8.  Sensitivity of optimization objectives to each configuration parameters

    图 9  多目标优化流程

    Figure 9.  Multi-objective optimization flow chart

    图 10  帕累托前沿

    Figure 10.  Pareto front

    图 11  优化后缓冲性能仿真分析结果

    Figure 11.  Simulation analysis results of buffering performance after optimization

    表  1  支链构型参数

    Table  1.   Configuration parameters of chain

    支链 $\alpha $/(°) $\beta $/(°) $r$/m $h$/ m $m$/m $l$/m
    主支链 36.87 0 0.07 0.415 0.2 0.6
    左支链 0 90 0.125 0.415 0.2 0.35
    右支链 0 90 0.125 0.415 0.2 0.35
    下载: 导出CSV

    表  2  月面探测器单腿单支链改进DH参数

    Table  2.   Improved DH parameter of single chain of single leg

    连杆k 转角${\phi _{k{{ - }}1}}$ 偏置${\alpha _{k - 1}}$ 转角${\varphi _k}$ 偏置${d_k}$
    1 0 0 $ {\beta _i} $ 0
    2 0 ${r_i}$ 0 ${h_i}$
    3 $ {\text{π}} /2 $ 0 ${\alpha _i} + {\theta _{i_1}}$ 0
    4 0 ${m_i}$ ${\theta _{i_2}}$ 0
    5 $ - {\text{π}}/2 $ 0 ${\theta _{i_3}}$ 0
    6 0 ${l_i}$-${l_{di}}$ 0 0
    下载: 导出CSV

    表  3  工况参数取值

    Table  3.   Values for landing conditions parameters (°)

    ${\varphi _{\text{P}}}$ ${\phi _{\text{P}}}$ ${\alpha _{\text{S}}}$
    取值范围 增量 取值范围 增量 取值范围 增量
    0~90 0.5 −5~5 2.5 3~9 3
    下载: 导出CSV

    表  4  设计变量取值范围及初始值

    Table  4.   Design variable range and initial value

    ${\alpha _1}$/(°) $m$/m ${r_{\text{S}}}$/m
    取值范围 初始值 取值范围 初始值 取值范围 初始值
    [25,45] 36.87 [0.125,0.225] 0.2 [0.05,0.15] 0.125
    下载: 导出CSV

    表  5  优化前后对比

    Table  5.   Comparison before and after optimization

    $ {\alpha _1} $/(°) $ m $/m $ {r_{\text{S}}} $/m $ {V_{\text{W}}} $/10−3 m3 $ {D_{{\text{Tmin}}}} $/mm $ {H_{{\text{Dmin}}}} $/mm
    初始值 最优解 初始值 最优解 初始值 最优解 初始值 最优解 初始值 最优解 初始值 最优解
    36.87 41.73 0.200 0.214 0.125 0.095 7.28 7.91 354.34 368.50 312.70 313.30
    下载: 导出CSV
  • [1] 曾福明, 杨建中, 满剑锋, 等. 月球着陆器着陆缓冲机构设计方法研究[J]. 航天器工程, 2011, 20(2): 46-51.

    ZENG F M, YANG J Z, MAN J F, et al. Study on design method of landing gear for lunar lander[J]. Spacecraft Engineering, 2011, 20(2): 46-51(in Chinese).
    [2] 王永滨, 蒋万松, 王磊, 等. 载人登月月面软着陆缓冲装置设计与分析[J]. 航天返回与遥感, 2015, 36(6): 22-28. doi: 10.3969/j.issn.1009-8518.2015.06.004

    WANG Y B, JIANG W S, WANG L, et al. Research of landing gear technology of human lunar landing[J]. Spacecraft Recovery & Remote Sensing, 2015, 36(6): 22-28(in Chinese). doi: 10.3969/j.issn.1009-8518.2015.06.004
    [3] WANG C, NIE H, CHEN J B, et al. The design and dynamic analysis of a lunar lander with semi-active control[J]. Acta Astronautica, 2019, 157: 145-156. doi: 10.1016/j.actaastro.2018.12.037
    [4] 陈金宝, 万峻麟, 李立春, 等. 月球探测器着陆性能若干影响因素分析[J]. 宇航学报, 2010, 31(3): 669-673.

    CHEN J B, WAN J L, LI L C, et al. Analysis on the influencing factors of performance in lunar lander[J]. Journal of Astronautics, 2010, 31(3): 669-673(in Chinese).
    [5] 丁建中, 王春洁, 王家俊, 等. 着陆工况对月球着陆器着陆缓冲性能影响分析[J]. 载人航天, 2016, 22(1): 132-137.

    DING J Z, WANG C J, WANG J J, et al. Effects of touchdown conditions on the buffering performance of the lunar lander[J]. Manned Spaceflight, 2016, 22(1): 132-137(in Chinese).
    [6] 董洋, 王春洁, 吴宏宇, 等. 触地关机模式下的着陆器软着陆稳定性研究[J]. 北京航空航天大学学报, 2019, 45(2): 317-324.

    DONG Y, WANG C J, WU H Y, et al. Soft landing stability of lander in mode of shutdown at touchdown[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 317-324(in Chinese).
    [7] MAEDA T, OTSUKI M, HASHIMOTO T, et al. Attitude stabilization for lunar and planetary lander with variable damper[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(8): 1790-1804. doi: 10.2514/1.G000325
    [8] 宋顺广, 王春洁. 基于蒙特卡罗法的月球探测器着陆稳定性分析[J]. 北京航空航天大学学报, 2013, 39(9): 1192-1196.

    SONG S G, WANG C J. Landing stability analysis of the lunar lander based on Monte Carlo approach[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(9): 1192-1196(in Chinese).
    [9] 丁宗茂, 王春洁, 吴宏宇, 等. 探测器触地关机软着陆稳定性分析[J]. 北京航空航天大学学报, 2018, 44(3): 614-620.

    DING Z M, WANG C J, WU H Y, et al. Stability analysis of explorer in soft landing mode of engine shutdown at touchdown[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 614-620(in Chinese).
    [10] DING J Z, LIU X A, DONG Y, et al. Stability analysis of Mars soft landing under uncertain landing conditions and two landing strategies[J]. Aircraft Engineering and Aerospace Technology, 2022, 94(10): 1883-1891. doi: 10.1108/AEAT-12-2021-0377
    [11] 王家俊, 王春洁, 宋顺广. 基于响应面法的月球着陆器软着陆性能优化[J]. 北京航空航天大学学报, 2014, 40(5): 707-711.

    WANG J J, WANG C J, SONG S G. Performance optimization of lunar lander based on response surface methodology[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(5): 707-711(in Chinese).
    [12] 吴宏宇, 王春洁, 丁宗茂, 等. 两种着陆模式下的着陆器缓冲机构构型优化[J]. 宇航学报, 2017, 38(10): 1032-1040.

    WU H Y, WANG C J, DING Z M, et al. Configuration optimization of landing gear under two kinds of landing modes[J]. Journal of Astronautics, 2017, 38(10): 1032-1040(in Chinese).
    [13] 吴宏宇, 王春洁, 丁宗茂, 等. 着陆姿态不确定下的着陆器缓冲机构优化设计[J]. 宇航学报, 2018, 39(12): 1323-1331.

    WU H Y, WANG C J, DING Z M, et al. Optimization design of a landing gear under uncertain landing attitude[J]. Journal of Astronautics, 2018, 39(12): 1323-1331(in Chinese).
    [14] HOWE A S. A modular habitation system for human planetary and space exploration[C]//Proceedings of the 45th International Conference Environmental Systems. Washington, D. C.: NASA, 2015: 1-24.
    [15] 梁鲁, 张志贤, 果琳丽, 等. 可移动式月球着陆器在载人月球探测活动中的任务分析[J]. 载人航天, 2015, 21(5): 472-478.

    LIANG L, ZHANG Z X, GUO L L, et al. Task analysis of mobile lunar lander in crewed lunar exploration missions[J]. Manned Spaceflight, 2015, 21(5): 472-478(in Chinese).
    [16] LIN R F, GUO W Z, CHEN X B, et al. Type synthesis of legged mobile landers with one passive limb using the singularity property[J]. Robotica, 2018, 36(12): 1836-1856. doi: 10.1017/S0263574718000760
    [17] LIN R F, GUO W Z. Novel design of a family of legged mobile landers based on decoupled landing and walking functions[J]. Journal of Mechanical Science and Technology, 2020, 34(9): 3815-3822. doi: 10.1007/s12206-020-0832-x
    [18] HAN Y C, GUO W Z, PENG Z K, et al. Dimensional synthesis of the reconfigurable legged mobile lander with multi-mode and complex mechanism topology[J]. Mechanism and Machine Theory, 2021, 155: 104097. doi: 10.1016/j.mechmachtheory.2020.104097
    [19] HAN Y C, GUO W Z, ZHAO D H, et al. Multi-mode unified modeling and operation capability synergistic evaluation for the reconfigurable legged mobile lander[J]. Mechanism and Machine Theory, 2022, 171: 104714. doi: 10.1016/j.mechmachtheory.2021.104714
    [20] 贾山, 周向华, 陈金宝, 等. 可移动月球着陆器系统设计与实验验证[J]. 深空探测学报, 2022, 9(1): 29-41.

    JIA S, ZHOU X H, CHEN J B, et al. System design and experimental verification of mobile lunar lander[J]. Journal of Deep Space Exploration, 2022, 9(1): 29-41(in Chinese).
    [21] 佟振鸣. 移动式着陆探测机器人构型设计与行走规划研究[D]. 上海: 上海交通大学, 2016: 15-49.

    TONG Z M. On configuration design and gait planning of mobile exploration lander[D]. Shanghai: Shanghai Jiaotong University, 2016: 15-49(in Chinese).
    [22] 贾山, 周向华, 陈金宝, 等. 缓冲/行走一体化着陆器运动学研究与步态规划[J]. 宇航学报, 2021, 42(4): 467-476.

    JIA S, ZHOU X H, CHEN J B, et al. Kinematics research and gait planning of buffering/walking integrated lander[J]. Journal of Astronautics, 2021, 42(4): 467-476(in Chinese).
    [23] 赵辰尧, 郭为忠, 林荣富. 基于尺度互异的腿式移动着陆器步态规划[J]. 机械设计与研究, 2021, 37(5): 68-72.

    ZHAO C Y, GUO W Z, LIN R F. Gait planning of legged mobile lander based on different leg-length scales[J]. Machine Design & Research, 2021, 37(5): 68-72(in Chinese).
    [24] 何天宇, 董洋, 檀傈锰, 等. 月基装备行走运动学分析与连续步态规划[J]. 北京航空航天大学学报, 2024, 50(1): 308-316.

    HE T Y, DONG Y, TAN L M, et al. Kinematic analysis and continuous gait planning of lunar-based equipment in walking state[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(1): 308-316(in Chinese).
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  82
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-20
  • 录用日期:  2022-10-04
  • 网络出版日期:  2022-11-11
  • 整期出版日期:  2024-08-28

目录

    /

    返回文章
    返回
    常见问答