Optimizing airborne PLC capacity through insufficient CP and window in OFDM-based communication
-
摘要:
机载电源线通信(PLC)技术可以减少机载设备间布线的数量和复杂度,但电源线中多径分量衰减小,信道持续时间长,采用常规循环前缀(CP)设计方法,使用长度不小于信道最大多径时延扩展的CP,会导致容量非最优,可通过选择非充分CP,并结合加窗技术进行优化。基于此,采用对内外侧的子载波施加不同长度CP的边窗技术,以提高通信容量为优化目标,提出一种综合分析通信窗函数和内外侧子载波CP长度的参数设计方法。根据分段机载PLC通信的互连拓扑和频变阻抗,利用传输线理论,建立PLC信道衰落模型;分三阶段调整CP和窗函数参数,进行设计优化,第1阶段得到满足邻道干扰(ACI)约束下的最小加窗扩展长度,第2阶段在该窗函数条件下,调整CP长度增大系统容量,第3阶段通过边窗技术分别优化内外侧子载波,得到最终的优选参数。仿真实验分析表明:所提方法能够在减小ACI的同时避免正交频分复用(OFDM)符号的过度时域扩展,使保守的CP和窗函数选择导致的波特率损失得到改善,最终提高OFDM系统容量;同时,所提方法可以接近或达到全空间枚举的优化效果,且使计算量可接受。
Abstract:Power line communication (PLC) decreases cabling volume and reduces wiring harness complexity. Therefore, capacity is not optimal if sufficient cyclic prefix (CP) that is no shorter than the channel duration is employed. Multipath components, on the other hand, suffer modest attenuation in PLC channels, creating extended channel duration. Therefore, it is reasonable to adopt insufficient CP combined with a windowing scheme to maximize capacity. A comprehensive approach to jointly adapt window and CP parameters is proposed, using the edge-window method which applies different windows to inner and edge subcarriers. Using frequency-selective impedances and airborne PLC topologies, one can first simulate PLC channels in accordance with transmission line theory. The CP and window settings should then be adjusted in three phases. In the first stage, obtain the minimum window overhead under the restriction of adjacent channel interference (ACI). In the second stage, adjust CP length to optimize capacity with the window obtained in the first stage. In the third stage, using edge-window, optimize inner and edge subcarriers separately and finally obtain optimal parameters. The results of the simulation indicate that the suggested strategy might approach or meet the maximum capacity achieved by full space enumeration, avoid excessive time growth of orthogonal frequency division multiplexing (OFDM) symbols while lowering ACI, and make the computation volume acceptable.
-
表 1 航空导线的物理参数
Table 1. Physical parameters of aerial conductors
$ r_{\mathrm{rad}} $/
mm$ r_{\mathrm{dist}} $/
mm$ {\varepsilon _{\mathrm{r}}} $ $ {\varepsilon _0} $/
(F·m−1)$ {\mu _{\mathrm{r}}} $ $ {\mu _0} $/
(H·m−1)$ {\sigma _{\mathrm{c}}} $/
(S·m−1)$ \tan \delta $ $ 1.2 $ $ 3.0 $ $ {\text{2}}{\text{.4}} $ $ {\text{8}}{\text{.859}} \times {\text{1}}{{\text{0}}^{ - 12}} $ 1 $ {\text{4π}} \times {\text{1}}{{\text{0}}^{ - 7}} $ $ {\text{5}}{\text{.76}} \times {\text{1}}{{\text{0}}^7} $ $ {\text{0}}{\text{.55}} \times {\text{1}}{{\text{0}}^{ - 3}} $ -
[1] DÉGARDIN V, SIMON E P, MORELLE M, et al. On the possibility of using PLC in aircraft[C]//Proceedings of the International Symposium on Power Line Communications and Its Applications. Piscataway: IEEE Press, 2010: 337-340. [2] DEGARDIN V, JUNQUA I, LIENARD M, et al. Theoretical approach to the feasibility of power-line communication in aircrafts[J]. IEEE Transactions on Vehicular Technology, 2013, 62(3): 1362-1366. doi: 10.1109/TVT.2012.2228245 [3] DEGARDIN V, LIENARD M, DEGAUQUE P, et al. Power line communication in aircraft: Channel modelling and performance analysis[C]//Proceedings of the 8th International Caribbean Conference on Devices, Circuits and Systems. Piscataway: IEEE Press, 2012: 1-3. [4] LARHZAOUI T, NOUVEL F, BAUDAIS J Y, et al. OFDM PLC transmission for aircraft flight control system[C]//Proceedings of the International Symposium on Power Line Communications and Its Applications. Piscataway: IEEE Press, 2014: 220-225. [5] MARÉ J C, FU J. Review on signal-by-wire and power-by-wire actuation for more electric aircraft[J]. Chinese Journal of Aeronautics, 2017, 30(3): 857-870. doi: 10.1016/j.cja.2017.03.013 [6] ZIMMERMANN M, DOSTERT K. A multipath model for the powerline channel[J]. IEEE Transactions on Communications, 2002, 50(4): 553-559. doi: 10.1109/26.996069 [7] TONELLO A M, VERSOLATTO F. Bottom-up statistical PLC channel modeling—Part I: Random topology model and efficient transfer function computation[J]. IEEE Transactions on Power Delivery, 2011, 26(2): 891-898. doi: 10.1109/TPWRD.2010.2096518 [8] TONELLO A M, ZHENG T. Bottom-up transfer function generator for broadband PLC statistical channel modeling[C]//Proceedings of the International Symposium on Power Line Communications and Its Applications. Piscataway: IEEE Press, 2009: 7-12. [9] ESMAILIAN T, KSCHISCHANG F R, GULAK P G. In-building power lines as high-speed communication channels: Channel characterization and a test channel ensemble[J]. International Journal of Communication Systems, 2003, 16(5): 381-400. doi: 10.1002/dac.596 [10] LIONG A A G, GOPAL L, JUWONO F H, et al. A channel model for three-node two-way relay-aided PLC systems[C]//Proceedings of the IEEE International Conference on Signal and Image Processing Applications. Piscataway: IEEE Press, 2019: 52-57. [11] MENG H, CHEN S, GUAN Y L, et al. Modeling of transfer characteristics for the broadband power line communication channel[J]. IEEE Transactions on Power Delivery, 2004, 19(3): 1057-1064. doi: 10.1109/TPWRD.2004.824430 [12] TONELLO A M, D’ALESSANDRO S, LAMPE L. Cyclic prefix design and allocation in bit-loaded OFDM over power line communication channels[J]. IEEE Transactions on Communications, 2010, 58(11): 3265-3276. doi: 10.1109/TCOMM.2010.092810.090447 [13] D’ALESSANDRO S, TONELLO A M, LAMPE L. Adaptive pulse-shaped OFDM with application to in-home power line communications[J]. Telecommunication Systems, 2012, 51(1): 3-13. doi: 10.1007/s11235-010-9410-3 [14] WU X L, ZHU B, RONG Y. Channel model proposal for indoor relay-assisted power line communications[J]. IET Communications, 2018, 12(10): 1236-1244. doi: 10.1049/iet-com.2017.0782 [15] POZAR D M. 微波工程[M]. 3版. 张肇仪, 周乐柱, 吴德明, 等译. 北京: 电子工业出版社, 2010: 160.POZAR D M. Microwave engineering[M]. 3rd ed. ZHANG Z Y, ZHOU L Z, WU D M, et al, translated. Beijing: Publishing House of Electronics Industry, 2010: 160(in Chinese). [16] SAHIN A, ARSLAN H. Edge windowing for OFDM based systems[J]. IEEE Communications Letters, 2011, 15(11): 1208-1211. doi: 10.1109/LCOMM.2011.090611.111530 [17] 朱新宇. 民航飞机电子电气系统[M]. 成都: 西南交通大学出版社, 2016: 16-17.ZHU X Y. Electronic and electrical system of civil aviation aircraft[M]. Chengdu: Southwest Jiaotong University Press, 2016: 16-17 (in Chinese). [18] 周海勇. 飞机电力线载波数据通信关键技术研究[D]. 南京: 南京航空航天大学, 2005: 15-17.ZHOU H Y. Research on key technology of high speed communication based aeroplane power line[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2005: 15-17(in Chinese). [19] SKLAR B. 数字通信: 基础与应用[M]. 2版. 徐平平, 宋铁成, 叶芝慧, 等译. 北京: 电子工业出版社, 2010: 725.SKLAR B. Digital communications: Fundamentals and applications[M]. 2nd ed. XU P P, SONG T C, YE Z H, et al. translated. Beijing: Publishing House of Electronics Industry, 2010: 725(in Chinese).