留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多波束低轨卫星用户分组与资源分配算法

代添雄 徐桢

代添雄,徐桢. 多波束低轨卫星用户分组与资源分配算法[J]. 北京航空航天大学学报,2024,50(8):2575-2584 doi: 10.13700/j.bh.1001-5965.2022.0638
引用本文: 代添雄,徐桢. 多波束低轨卫星用户分组与资源分配算法[J]. 北京航空航天大学学报,2024,50(8):2575-2584 doi: 10.13700/j.bh.1001-5965.2022.0638
DAI T X,XU Z. Multi-beam LEO satellite user grouping and resource allocation algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2575-2584 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0638
Citation: DAI T X,XU Z. Multi-beam LEO satellite user grouping and resource allocation algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2575-2584 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0638

多波束低轨卫星用户分组与资源分配算法

doi: 10.13700/j.bh.1001-5965.2022.0638
基金项目: 国家重点研发计划(2020YFB1806800)
详细信息
    通讯作者:

    E-mail:xuzhen@buaa.edu.cn

  • 中图分类号: TN927

Multi-beam LEO satellite user grouping and resource allocation algorithm

Funds: National Key Research and Development Program of China (2020YFB1806800)
More Information
  • 摘要:

    与地面网络设施相比,卫星的机载资源十分有限,面对用户地理位置及流量需求分布的不均匀,传统的固定分组和固定资源分配方式缺乏灵活性,限制了系统容量。基于地理位置的用户分组,利用相控阵天线产生的具有灵活方向和波束宽度的动态波束和跳波的时间分片技术,可以实现对卫星资源的合理分配和高效利用。在低轨多波束卫星场景下,利用P中心问题模拟用户分组问题算法对卫星用户进行分组,实现用户平均信息速率的最大化。基于分组结果提出一套适用于用户分组方案的灵活资源分配算法,并在最后加入一个组间资源调配的过程,以避免空闲资源的浪费。经过实验数据模拟和性能评估,所提算法比传统的用户分组和资源分配算法更能够有效提升系统吞吐量,降低用户平均排队时延。

     

  • 图 1  卫星用户分组

    Figure 1.  Satellite user grouping

    图 2  单个卫星下跳波

    Figure 2.  Beam-hopping in single satellite

    图 3  功率分配及组间调配

    Figure 3.  Power allocation and inter-group deployment

    图 4  P中心算法用户分组图案

    Figure 4.  User grouping pattern of P-center algorithm

    图 5  K均值算法用户分组图案

    Figure 5.  User grouping pattern of K-means algorithm

    图 6  Spiral算法用户分组图案

    Figure 6.  User grouping pattern of Spiral algorithm

    图 7  不同用户分组方案下吞吐量比较

    Figure 7.  Throughput comparison under different user grouping schemes

    图 8  不同用户分组方案下平均等待时延比较

    Figure 8.  Average waiting delay comparison under different user grouping schemes

    图 9  不同用户分组方案下请求满足率比较

    Figure 9.  Request satisfied ratio comparison under different user grouping schemes

    图 10  a取不同值时吞吐量比较

    Figure 10.  Throughput comparison when a changes

    图 11  a取不同值时平均等待时延比较

    Figure 11.  Average waiting delay comparison when a changes

    图 12  $ a $取不同值时请求满足率比较

    Figure 12.  Request satisfied ratio comparison when a changes

    图 13  不同功率分配方案下吞吐量比较

    Figure 13.  Throughput comparison under different power allocation schemes

    图 14  不同功率分配方案下平均等待时延比较

    Figure 14.  Average waiting delay comparison under different power allocation schemes

    图 15  不同功率分配方案下请求满足率比较

    Figure 15.  Request satisfied ratio comparison under different power allocation schemes

    图 16  不同功率分配方案下平均使用功率比较

    Figure 16.  Average power used under different when power allocation schemes

    表  1  主要仿真参数

    Table  1.   Main simulation parameters

    参数 数值
    地球半径/km
    间隔半径${r_{{\text{keep}}}}$/km
    可用带宽$B$/MHz
    噪声功率谱密度${N_0}$ /(dBm·Hz−1
    波长$\lambda $ /m
    卫星高度$h$ /km
    功率衰减$\alpha $
    接收机天线增益${G_{\text{r}}}$ /dB
    天线效率$\eta $
    用户数目
    卫星数目
    总功率${P_{\text{total}}}$/W
    波束最小功率${P_{\min }}$/W
    波束最小功率${P_{\max }}$/W
    时隙长度${t_{{\text{slot}}}}$ /ms
    请求的生存周期${T_{{\text{ttl}}}}$
    流量请求取值范围/(Mb·s−1)
    卫星覆盖范围/km
    波束最大半径$ {r_{\max }} $ /km
    波束最小半径${r_{\min }}$ /km
    跳波束周期${T_{\text{s}}}$ /ms
    6371
    150
    200
    −174
    0.015
    1000
    1
    21.8
    0.65
    300
    2
    100
    10
    50
    10
    8
    [2, 15]
    500
    75
    40
    2560
    下载: 导出CSV
  • [1] STOREK K U, KNOPP A. Fair user grouping for multibeam satellites with MU-MIMO precoding[C]//Proceedings of the IEEE Global Communications Conference. Piscataway: IEEE Press, 2017: 1-7.
    [2] ARANITI G, BISIO I, DE SANCTIS M, et al. Joint coding and multicast subgrouping over satellite-eMBMS networks[J]. IEEE Journal on Selected Areas in Communications, 2018, 36(5): 1004-1016. doi: 10.1109/JSAC.2018.2832818
    [3] LYU J B, ZENG Y, ZHANG R, et al. Placement optimization of UAV-mounted mobile base stations[J]. IEEE Communications Letters, 2017, 21(3): 604-607. doi: 10.1109/LCOMM.2016.2633248
    [4] PARK H, PARK S, SONG T, et al. An incremental multicast grouping scheme for mmWave networks with directional antennas[J]. IEEE Communications Letters, 2013, 17(3): 616-619. doi: 10.1109/LCOMM.2013.011513.122519
    [5] LIU B K, JIANG C X, KUANG L L, et al. Joint user grouping and beamwidth optimization for satellite multicast with phased array antennas[C]//Proceedings of the IEEE Global Communications Conference. Piscataway: IEEE Press, 2020: 1-6.
    [6] TANG J Y, BIAN D M, LI G X, et al. Optimization method of dynamic beam position for LEO beam-hopping satellite communication systems[J]. IEEE Access, 2021, 9: 57578-57588. doi: 10.1109/ACCESS.2021.3072104
    [7] DREZNER Z. The P-centre problem—Heuristic and optimal algorithms[J]. Journal of the Operational Research Society, 1984, 35(8): 741-748.
    [8] 张晨, 张更新, 王显煜. 基于跳波束的新一代高通量卫星通信系统设计[J]. 通信学报, 2020, 41(7): 59-72.

    ZHANG C, ZHANG G X, WANG X Y. Design of next generation high throughput satellite communication system based on beam-hopping[J]. Journal on Communications, 2020, 41(7): 59-72 (in Chinese).
    [9] 王琳, 张晨, 王显煜, 等. 基于多波束卫星系统的跳波束技术研究[J]. 南京邮电大学学报(自然科学版), 2019, 39(3): 25-30.

    WANG L, ZHANG C, WANG X Y, et al. Research of beam-hopping technology based on multi-beam satellite system[J]. Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition), 2019, 39(3): 25-30(in Chinese).
    [10] WANG L, ZHANG C, QU D X, et al. Resource allocation for beam-hopping user downlinks in multi-beam satellite system[C]//Proceedings of the 15th International Wireless Communications & Mobile Computing Conference. Piscataway: IEEE Press, 2019: 925-929.
    [11] LIU W Y, TIAN F, JIANG Z Y, et al. Beam-hopping based resource allocation algorithm in LEO satellite network[C]//Proceedings of the International Conference on Space Information Network. Berlin: Springer, 2019: 113-123.
    [12] TIAN F, HUANG L L, LIANG G, et al. An efficient resource allocation mechanism for beam-hopping based LEO satellite communication system[C]//Proceedings of the IEEE International Symposium on Broadband Multimedia Systems and Broadcasting. Piscataway: IEEE Press, 2019: 1-5.
    [13] HAN H, ZHENG X Q, HUANG Q F, et al. QoS-equilibrium slot allocation for beam hopping in broadband satellite communication systems[J]. Wireless Networks, 2015, 21(8): 2617-2630. doi: 10.1007/s11276-015-0934-z
    [14] HU X, ZHANG Y C, LIAO X L, et al. Dynamic beam hopping method based on multi-objective deep reinforcement learning for next generation satellite broadband systems[J]. IEEE Transactions on Broadcasting, 2020, 66(3): 630-646. doi: 10.1109/TBC.2019.2960940
    [15] WANG C, BIAN D M, SHI S C, et al. A novel cognitive satellite network with GEO and LEO broadband systems in the downlink case[J]. IEEE Access, 2018, 6: 25987-26000. doi: 10.1109/ACCESS.2018.2831218
    [16] ANZALCHI J, COUCHMAN A, GABELLINI P, et al. Beam hopping in multi-beam broadband satellite systems: System simulation and performance comparison with non-hopped systems[C]//Proceedings of the 5th Advanced Satellite Multimedia Systems Conference and the 11th Signal Processing for Space Communications Workshop. Piscataway: IEEE Press, 2010: 248-255.
    [17] ALEGRE R, ALAGHA N, VÁZQUEZ-CASTRO M Á. Heuristic algorithms for flexible resource allocation in beam hopping multi-beam satellite systems[C]//Proceedings of the 29th AIAA International Communications Satellite Systems Conference. Reston: AIAA, 2011.
    [18] LEI J, VÁZQUEZ-CASTRO M Á. Multibeam satellite frequency/time duality study and capacity optimization[J]. Journal of Communications and Networks, 2011, 13(5): 472-480. doi: 10.1109/JCN.2011.6112304
    [19] SHI S C, LI G X, LI Z Q, et al. Joint power and bandwidth allocation for beam-hopping user downlinks in smart gateway multibeam satellite systems[J]. International Journal of Distributed Sensor Networks, 2017, 13(5): 155014771770946.
    [20] WELZL E. Smallest enclosing disks (balls and ellipsoids)[M]// New Results and New Trends in Computer Science. Berlin: Springer, 2006: 359-370.
    [21] European Telecommunications Standards Institute. Digital Video Broadcasting (DVB); Second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications; part II: S2‐extensions (DVB‐S2X). ETSI EN 302 307‐2[S]. Grand Saconnex: European Telecommunications Standards Institute, 2014:100-126.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  104
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-26
  • 录用日期:  2022-09-28
  • 网络出版日期:  2022-10-12
  • 整期出版日期:  2024-08-28

目录

    /

    返回文章
    返回
    常见问答