留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于损伤力学的轴承钢旋弯疲劳寿命预测

于宜冰 贺自强 贺小帆 杨振宇 詹志新

于宜冰,贺自强,贺小帆,等. 基于损伤力学的轴承钢旋弯疲劳寿命预测[J]. 北京航空航天大学学报,2024,50(8):2585-2594 doi: 10.13700/j.bh.1001-5965.2022.0639
引用本文: 于宜冰,贺自强,贺小帆,等. 基于损伤力学的轴承钢旋弯疲劳寿命预测[J]. 北京航空航天大学学报,2024,50(8):2585-2594 doi: 10.13700/j.bh.1001-5965.2022.0639
YU Y B,HE Z Q,HE X F,et al. Rotating bending fatigue life prediction of bearing steel based on damage mechanics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2585-2594 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0639
Citation: YU Y B,HE Z Q,HE X F,et al. Rotating bending fatigue life prediction of bearing steel based on damage mechanics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2585-2594 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0639

基于损伤力学的轴承钢旋弯疲劳寿命预测

doi: 10.13700/j.bh.1001-5965.2022.0639
基金项目: 国家科技重大专项(2017-Ⅶ-0003-0096);航空科学基金(201909051002)
详细信息
    通讯作者:

    E-mail:zzxupc@163.com

  • 中图分类号: V215.5;O346.2

Rotating bending fatigue life prediction of bearing steel based on damage mechanics

Funds: National Science and Technology Major Project (2017-Ⅶ-0003-0096); Aeronautical Science Foundation of China (201909051002)
More Information
  • 摘要:

    基于连续损伤力学理论,提出了考虑真空化学热处理工艺影响的疲劳损伤模型及数值计算方法,研究了M50NiL轴承钢的旋弯疲劳损伤分析及寿命预测方法。给出了本构模型、疲劳损伤演化方程和理论模型中的材料参数标定方法,基于ABAQUS平台,通过编写UMAT子程序,实现了基于硬化层影响的疲劳损伤分析的损伤力学-有限元数值计算方法;对淬火回火、渗碳及碳氮复渗2种真空化学热处理的M50NiL轴承钢,开展了旋弯疲劳试验,分析了热处理工艺对疲劳性能的影响;基于提出的疲劳损伤模型及数值计算方法,预测了M50NiL轴承钢的旋弯疲劳寿命,并与试验结果进行对比,验证了所提方法的适用性。

     

  • 图 1  损伤力学有限元方法的计算流程

    Figure 1.  The computational flowchart of damage mechanics finite element method

    图 2  试件示意

    Figure 2.  Schematic diagram of specimen

    图 3  未处理M50NiL轴承钢旋弯疲劳数据及S-N曲线

    Figure 3.  Rotating bending fatigue data and S-N curve of untreated M50NiL bearing steel

    图 4  渗碳处理M50NiL轴承钢试件旋弯疲劳数据及S-N曲线

    Figure 4.  Rotating bending fatigue data and S-N curves of carburized M50NiL bearing steel

    图 5  碳氮复渗处理M50NiL轴承钢试件旋弯疲劳数据及S-N曲线

    Figure 5.  Rotating bending fatigue data and S-N curves of carbonitrided M50NiL bearing steel

    图 6  M50NiL轴承钢试件的有限元示意图

    Figure 6.  FEM schematic diagram of M50NiL bearing steel specimen

    图 7  N = 80 000时损伤度的分布

    Figure 7.  Distribution of damage degree for N = 80 000

    图 8  危险点处损伤变量及损伤速率随循环次数的变化

    Figure 8.  Changes in damage variable and damage rate with the number of cycles at critical point

    图 9  危险点处轴向应力随循环次数的变化

    Figure 9.  Variation of axial stress with the number of cycles at critical point

    图 10  危险点处的循环应力-应变

    Figure 10.  Cyclic stress-strain at critical point

    图 11  有限元计算寿命和闭合解预测寿命对比

    Figure 11.  Comparison of FEM predicted life and closed theoretical solution

    图 12  不同工艺下M50NiL轴承钢旋弯疲劳试验寿命与预测寿命对比

    Figure 12.  Experimental results vs predicted life bearing steel specimen under different methods

    图 13  1 200 MPa, R=−1时淬火回火和渗碳处理下M50NiL轴承钢试件旋弯疲劳的损伤度变化规律

    Figure 13.  Variation law of damage degree in rolling contact fatigue of M50NiL bearing steel specimen under quenching and tempering and carburizing processes at 1200 MPa and R=−1

    图 14  1 200 MPa, R=−1时只淬火回火和渗碳处理下M50NiL轴承钢试件的弹性模量变化规律

    Figure 14.  Variation law of elastic modulus of M50NiL bearing steel specimen under quenching and tempering and carburizing processes at 1200 MPa and R=−1

    图 15  渗碳处理的M50NiL轴承钢试件旋弯疲劳损伤度随应力比的变化

    Figure 15.  Variation of damage evolution with stress ratio of carburized M50NiL bearing steel specimen

    图 16  碳氮复渗处理的M50NiL轴承钢试件旋弯疲劳损伤度随应力比的变化

    Figure 16.  Variation of damage evolution with stress ratio of carbonitrided M50NiL bearing steel specimen

    图 17  R=−1时渗碳处理的M50NiL轴承钢试件旋弯疲劳损伤度随应力水平的变化

    Figure 17.  Variation of damage evolution with stress level of carburized M50NiL bearing steel specimen under R=−1

    图 18  R=−1时碳氮复渗处理的M50NiL轴承钢试件旋弯疲劳损伤度随应力水平的变化

    Figure 18.  Variation of damage evolution with stress level of carbonitrided M50NiL bearing steel specimen under R=−1

    表  1  未进行表面硬化处理的M50NiL轴承钢试件的静力力学性能

    Table  1.   Static mechanical properties of M50NiL bearing steel specimen without surface hardening

    材料E/GPa抗拉强度/MPa
    M50NiL2021413
    下载: 导出CSV

    表  2  渗碳和碳氮复渗的硬化层材料参数

    Table  2.   Material parameters of carburized and carbonitrided hardened layer

    工艺 深度/mm E/GPa H/GPa Am B n
    渗碳0.4196.718.601306.447317.830.5
    0.8198.518.461227.167233.580.5
    1.2199.787.45949.236743.530.5
    1.6204.976.96766.316781.830.5
    2.0203.456.57675.216594.200.5
    2.4203.246.30635.206331.170.5
    2.8203.056.15594.346278.780.5
    3.2203.516.13572.666287.360.5
    3.6203.976.25611.606368.360.5
    4.0204.505.76539.575827.440.5
    碳氮复渗0.4203.928.381175.387296.700.5
    0.8199.467.61947.267118.170.5
    1.2197.526.57709.876434.090.5
    1.6207.776.13619.925980.080.5
    2.0197.585.92585.755948.470.5
    2.4200.135.80571.725795.600.5
    2.8204.565.87562.895870.990.5
    3.2207.285.87551.675923.640.5
    3.6201.425.89575.665848.250.5
    4.0201.815.77564.225774.150.5
    下载: 导出CSV

    表  3  未进行表面硬化处理的M50NiL轴承钢试件的疲劳损伤材料参数

    Table  3.   Fatigue damage material parameters of M50NiL bearing steel specimen without surface hardening

    材料Lm
    M50NiL1.91×103911.66
    下载: 导出CSV

    表  4  渗碳和碳氮复渗表面处理的M50NiL轴承钢试件的疲劳损伤材料参数

    Table  4.   Fatigue damage material parameters of M50NiLbearing steel specimens carburized and carbonitrided

    工艺 Kt p q s
    渗碳 1 9.77×1024 1.580
    2 9.77×1024 2.632 109.90
    碳氮复渗 1 7.32×1017 1.360
    2 7.32×1017 2.029 69.11
    下载: 导出CSV
  • [1] 寇思源. 航空发动机主轴轴承M50NIL钢应用技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    KOU S Y. Research on application technology of M50NIL steel for aviationengine spindle bearing[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [2] 王博, 杨卯生, 赵昆渝. 双真空冶炼高合金轴承钢后真空表面渗碳疲劳性能的研究[J]. 真空科学与技术学报, 2016, 36(7): 838-843.

    WANG B, YANG M S, ZHAO K Y. Fatigue resistance of surface-carburized Cr-co-Mo-Ni bearing steel refined by vacuum melting[J]. Chinese Journal of Vacuum Science and Technology, 2016, 36(7): 838-843(in Chinese).
    [3] 王艳江. 中碳Cr、Mo渗氮轴承钢的耐磨与疲劳性能研究[D]. 石家庄: 河北科技大学, 2017.

    WANG Y J. Study on wear and fatigue properties of medium carbon Cr and Mo nitriding bearing steel[D]. Shijiazhuang: Hebei University of Science and Technology, 2017(in Chinese).
    [4] WONGTIMNOI K, CHOWWANONTHAPUNYA T. Evolution of microstructure and wear resistance of carburized low carbon steel[J]. International Journal of Integrated Engineering, 2022, 14(1): 66-72.
    [5] WAN H Y, LU H, REN Y P, et al. Strengthening mechanisms and tensile properties of 20Cr2Mn2Mo processed by laser shock peening and vacuum carbonitriding[J]. Surface and Coatings Technology, 2022, 439: 128462. doi: 10.1016/j.surfcoat.2022.128462
    [6] M EURLING F. Influence of carbide and inclusion contents on the fatigue properties of high speed steels and tool steels[J]. International Journal of Fatigue, 2001, 23(3): 215-224. doi: 10.1016/S0142-1123(00)00087-6
    [7] 史智越. GCr15轴承钢旋转弯曲疲劳性能研究[D]. 北京: 钢铁研究总院, 2019.

    SHI Z Y. Study on rotary bending fatigue properties of GCr15 bearing steel[D]. Beijing: Central Iron and Steel Research Institute, 2019(in Chinese).
    [8] PICAS I, CUADRADO N, CASELLAS D, et al. Microstructural effects on the fatigue crack nucleation in cold work tool steels[J]. Procedia Engineering, 2010, 2(1): 1777-1785. doi: 10.1016/j.proeng.2010.03.191
    [9] XIAO N, HUI W J, ZHANG Y J, et al. High-cycle fatigue behavior of vacuum-carburized 20Cr2Ni4 steel with different case depths[J]. Journal of Materials Engineering and Performance, 2019, 28(6): 3413-3422. doi: 10.1007/s11665-019-04127-7
    [10] 黄帅, 张国强, 王毛球, 等. 不同渗碳层深度下重载齿轮钢的疲劳性能[J]. 钢铁研究学报, 2012, 24(4): 34-38.

    HUANG S, ZHANG G Q, WANG M Q, et al. Fatigue properties of heavy-duty gear steel with different carburized depth[J]. Journal of Iron and Steel Research, 2012, 24(4): 34-38(in Chinese).
    [11] 孙侠生, 苏少普, 孙汉斌, 等. 国外航空疲劳研究现状及展望[J]. 航空学报, 2021, 42(5): 524791.

    SUN X S, SU S P, SUN H B, et al. Current status and prospect of overseas research on aeronautical fatigue[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5): 524791(in Chinese).
    [12] 秦国华, 郭翊翔, 王华敏, 等. 飞机整体结构件的“加工变形-疲劳寿命” 多目标结构优化方法[J]. 工程力学, 2021, 38(8): 222-236.

    QIN G H, GUO Y X, WANG H M, et al. Multiple objective structural optimization on “machining deformation-fatigue life” of aeronautical monolithic components[J]. Engineering Mechanics, 2021, 38(8): 222-236(in Chinese).
    [13] 武陇岗, 王瑞杰, 刘飞, 等. AZ31B/TA15异种材料电阻点焊接头的疲劳寿命预测[J]. 材料热处理学报, 2022, 43(3): 168-176.

    WU L G, WANG R J, LIU F, et al. Fatigue life prediction of resistance spot welded joints of AZ31B/TA15 dissimilar materials[J]. Transactions of Materials and Heat Treatment, 2022, 43(3): 168-176(in Chinese).
    [14] 刘俭辉, 赵贺, 冉勇, 等. 基于临界面理论的多轴等效应变疲劳寿命预估模型[J]. 中国机械工程, 2022, 33(15): 1821-1827.

    LIU J H, ZHAO H, RAN Y, et al. Multiaxial equivalent strain fatigue life prediction model based on critical plane theory[J]. China Mechanical Engineering, 2022, 33(15): 1821-1827(in Chinese).
    [15] 甘磊, 吴昊, 仲政. 基于能量法的多轴疲劳寿命预测方法[J]. 固体力学学报, 2019, 40(3): 260-268.

    GAN L, WU H, ZHONG Z. Fatigue life prediction under multiaxial loading using energy-based models[J]. Chinese Journal of Solid Mechanics, 2019, 40(3): 260-268(in Chinese).
    [16] 游文俊, 梅威威, 王计真, 等. 考虑沙尘颗粒冲蚀损伤的航空叶片寿命预估[J]. 航空科学技术, 2022, 33(8): 68-77.

    YOU W J, MEI W W, WANG J Z, et al. Life prediction for the aircraft blade with sand particles erosion damage[J]. Aeronautical Science & Technology, 2022, 33(8): 68-77(in Chinese).
    [17] 孟莉, 杨硕, 沈泳星. 断裂相场在循环塑性与疲劳分析中的应用[J]. 固体力学学报, 2021, 42(3): 334-344.

    MENG L, YANG S, SHEN Y X. Phase field approach to cyclic plasticity and fatigue analysis[J]. Chinese Journal of Solid Mechanics, 2021, 42(3): 334-344(in Chinese).
    [18] 叶文静, 王莉华. 基于反向传播神经网络的疲劳裂纹扩展分析[J]. 力学季刊, 2021, 42(4): 752-762.

    YE W J, WANG L H. Fatigue crack propagation analysis based on back propagation neural network[J]. Chinese Quarterly of Mechanics, 2021, 42(4): 752-762(in Chinese).
    [19] SHEN F, HU W P, MENG Q C. New approach based on continuum damage mechanics with simple parameter identification to fretting fatigue life prediction[J]. Applied Mathematics and Mechanics, 2015, 36(12): 1539-1554. doi: 10.1007/s10483-015-2002-6
    [20] KACHANOV L M. Rupture time under creep conditions[J]. International Journal of Fracture, 1999, 97(1): 11-18.
    [21] VASU K R S, VINITH Y G, UDAY S G, et al. A review on Johnson Cook material model[J]. Materials Today: Proceedings, 2022, 62: 3450-3456. doi: 10.1016/j.matpr.2022.04.279
    [22] LEMAITRE J, CHABOCHE J L, MAJI A K. Mechanics of solid materials[J]. Journal of Engineering Mechanics, 1993, 119(3): 642-643.
    [23] XIAO Y. A continuum damage mechanics model for high cycle fatigue[J]. International Journal of Fatigue, 1998, 20(7): 503-508. doi: 10.1016/S0142-1123(98)00005-X
    [24] SHEN F, ZHAO B, LI L, et al. Fatigue damage evolution and lifetime prediction of welded joints with the consideration of residual stresses and porosity[J]. International Journal of Fatigue, 2017, 103: 272-279. doi: 10.1016/j.ijfatigue.2017.06.014
    [25] 中国国家标准化管理委员会. 金属材料疲劳试验旋转弯曲方法: GB/T 4337—2015[S]. 北京:中国标准出版社, 2015.

    China National Standardization Administration. Rotational bending method for fatigue test of metallic materials: GB/T 4337—2015[S]. Beijing: China Standards Press, 2015(in Chinese).
  • 加载中
图(18) / 表(4)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  98
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-26
  • 录用日期:  2022-09-30
  • 网络出版日期:  2022-10-14
  • 整期出版日期:  2024-08-28

目录

    /

    返回文章
    返回
    常见问答