-
摘要:
为形成逻辑严密、可追溯的适航符合性验证资料,提出一种基于符合性证据链的航电系统工程试验方法,并对实现中的关键问题进行分析研究。以自动飞行控制系统的工程试验为例,设计与实现了基于自动飞行控制系统适航验证需求的验证平台。在验证方案设计中,针对复杂验证环境中部分参数不确定性描述问题,提出一种基于分类概率多场景分析的验证方案设计方法,基于适航验证需求,对飞行数据进行筛选,通过对筛选后的飞行数据进行统计特性分析、随机抽样与合并缩减,生成包含发生概率的确定性场景,描述验证环境中部分参数的不确定性。在验证数据分析中,针对多场景多参数条件下的适航符合性判断问题,提出基于加权Dempster-Shafer证据理论的适航符合性评估方法,以确定性场景发生概率为权重,进行证据融合,避免部分小概率场景对融合结果的干扰。基于实际飞行数据,自动飞行控制系统的自动飞行模式工程试验结果表明,所提方法有效可行。
-
关键词:
- 符合性证据链 /
- 工程试验 /
- 分类概率多场景分析 /
- Dempster-Shafer证据理论 /
- 自动飞行控制系统
Abstract:In order to form logical and traceable airworthiness conformity materials, an engineering test method for an avionics system based on a conformity evidence chain is proposed, and the key problems in the implementation are analyzed and studied. A validation platform based on the specifications of an automatic flight control system’s airworthiness verification is built and implemented, using the engineering test of the system as an example. In the validation scheme, for the problem of describing the uncertainty of some parameters under complex validation scenarios, an authentication scheme based on classification probability multi-scene analysis is proposed. Based on the requirements of airworthiness verification, the flight data is filtered. To characterize the uncertainty of specific parameters under the validation scenario, a deterministic scenario with the occurrence probability is constructed by applying statistical characteristic analysis, random sampling, and merge reduction to the filtered flight data. A method for analyzing airworthiness compliance based on weighted Dempster-Shafer evidence theory is proposed, with the goal of addressing the issue of airworthiness conformity judgment in multi-scenario and multi-parameter conditions through validation data analysis. The occurrence probability of deterministic scenes is taken as the weight to conduct evidence fusion, and the interference of some small probability scenes on the fusion results is avoided. The suggested approach is practical and efficient, as demonstrated by the outcomes of the automatic flight mode engineering test conducted utilizing real flight data for the automatic flight control system.
-
表 1 AFCS工程试验验证需求与适航规范对应
Table 1. Relational table between AFCS airworthiness verification requirements and airworthiness specifications
工程试验
验证需求条款/规章 名称 飞机级
验证需求CCAR 25.671[14] 操纵系统总则 CCAR 25.672[14] 增稳系统及自动和带动力的操纵
系统CCAR 25.1309[14] 设备、系统及安装 系统级(性能、环境、软件和硬件)验证需求 RTCA DO-178B[15] 机载系统和设备合格审定中的软件
考虑RTCA DO-254[17] 机载电子硬件设计保证指南 RTCA DO-325[18] 自动飞行导引和控制系统及设备的最低性能标准 SAE ARP4754A[19] 关于高度综合或复杂的飞机系统的合格审定考虑 SAE ARP4761A[20] 民用机载系统和设备安全性评估过程的指导原则和方法 CTSO-C198[16] 自动飞行导引与控制系统(AFGCS)设备 AC 25.1329-1C[15] 飞行导引系统的批准 CCAR 25.603,
CCAR 25.605,
CCAR 25.1309,
CCAR 25.1316,
CCAR 25.1329[14]材料,制造方法,设备、系统及安装,系统闪电防护,飞行导引系统 表 2 验证需求矩阵
Table 2. Matrix of validation requirements
适航规章/技术标准/咨询
通告条款验证通过要求 验证需求
等级CCAR 25.671(c)[14] 执行机构故障的情况下仍能继续安全飞行 纯飞机级
需求CCAR 25.1309(b)、(d)[14] 极不可能发生妨碍安全飞行与机组处理的失效状态 RTCA DO-325 2.2.10[18] 在不同的预设高度点从不同的垂直模式自动切换到高度获取模式 CCAR 25.1329(c)[14] 飞行模式切换导致的航迹瞬变不能大于微小瞬变 AC 25.1329-1C 64.g.(2).(h)[15] 在高度捕获期间,调整气压高度表不会导致高度捕获
失败兼顾飞机级与系统级
需求AC 25.1329-1C 64.g.(2).(i)[15] 从其他垂直模式自动切换到高度获取模式或高度获取模式工作时保持参考空速 表 3 AFCS架构映射
Table 3. Mapping of AFCS architecture
机型 设备 A320 FMGC,ELAC+SEC+FAC,FM(FMGC),FADEC,ADIRS B737 AFDC,PFC,FM(AIMS),EEC,ADM 表 4 AFCS工作模式映射
Table 4. Mapping of AFCS working modes
机型 水平模式 垂直模式 A320 NAV,HDG/TRK,LOC CLB,DES,ALT,V/S-FPA,
EXPEDITE,G/SB737 LNAV,HDG/TRK,LOC VNAV,ALT,V/S-FPA,FLCH,G/S 表 5 部分场景的发生概率
Table 5. Occurrence probability of some scenarios
场景序号 概率值 场景序号 概率值 1 0.221 5 0.001 2 0.105 6 0.006 3 0.024 7 0.013 4 0.037 8 0.005 表 6 场景1下验证通过条件变量基本概率赋值
Table 6. Basic probability assignment for conditional related variables under scenario 1
证据体 基本概率赋值 满足验证需求 不满足验证需求 m1 0.9032 0.0978 m2 0.7535 0.2475 m3 0.8713 0.1297 m4 0.8477 0.1533 m5 0.8102 0.1908 表 7 场景1的基本概率赋值
Table 7. Basic probability assignment for scenario 1
证据体 基本概率赋值 满足验证需求 不满足验证需求 k1 0.9996 0.0004 表 8 部分场景基本概率赋值结果
Table 8. Basic probability assignment results for some scenarios
证据体 权重系数 基本概率赋值 满足验证需求 不满足验证需求 k1 0.221 0.9996 0.0004 k2 0.105 0.7594 0.2406 k3 0.024 0.8403 0.1597 k4 0.037 0.7905 0.2095 k5 0.001 0.2694 0.7306 k6 0.006 0.4417 0.5583 k7 0.013 0.3814 0.6186 k8 0.005 0.2207 0.7793 表 9 AFCS适航符合性分析结果
Table 9. AFCS airworthiness conformity analysis results
算法 基本概率赋值 满足验证需求 不满足验证需求 传统证据理论 0.6232 0.3768 加权D-S证据理论 0.7352 0.2648 -
[1] 毛志威, 屈展文, 张彤, 等. 基于MBSE的民机审定试飞场景设计[J]. 系统工程与电子技术, 2020, 42(8): 1768-1775.MAO Z W, QU Z W, ZHANG T, et al. Design of civil aircraft certification test flight scenario based on MBSE[J]. Systems Engineering and Electronics, 2020, 42(8): 1768-1775(in Chinese). [2] LI H M, ZHANG X N, TANG C, et al. A functional requirements development and management approach applied to a civil aircraft program[C]//Proceedings of the Asia-Pacific International Symposium on Aerospace Technology. Berlin: Springer, 2019: 3025-3039. [3] VILJOEN D, HOLM J. A life cycle model for the development of airborne electronic equipment[J]. South African Journal of Industrial Engineering, 2017, 28(3): 89-104. [4] FENG T T, ZHAO Y R, HOU X J, et al. Research on software testing technique of airborne equipment based on airworthiness[J]. Procedia Engineering, 2011, 17: 489-496. doi: 10.1016/j.proeng.2011.10.059 [5] Radio Technical Commission for Aeronautics. Software considerations in airborne systems and equipment certification: RTCA DO-178B[S]. Washington, D. C. : Radio Technical Commission for Aeronautics, 1992. [6] DU X Y, DU C L, CHEN J C, et al. A FACE-based simulation and verification approach for avionics systems[C]//Proceedings of the IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference. Piscataway: IEEE Press, 2019: 1509-1513. [7] ULBIG P, MÜLLER D, TORENS C, et al. Flight simulator-based verification for model-based avionics applications on multi-core targets[C]//Proceedings of the AIAA Scitech 2019 Forum. Reston: AIAA, 2019: 1976. [8] 高振兴, 徐彧. 民机自动飞行模式设计规范与适航性分析[J]. 航空计算技术, 2017, 47(3): 80-84.GAO Z X, XU Y. Design specification and airworthiness analysis of automatic flight modes for civil aircraft[J]. Aeronautical Computing Technique, 2017, 47(3): 80-84(in Chinese). [9] 黄雷, 禚真福, 岳崇旺, 等. 基于飞行自动控制系统的单机件综合测试平台设计[J]. 计算机测量与控制, 2013, 21(10): 2630-2631.HUANG L, GAO Z F, YUE C W, et al. Design of single unit testing platform of AFCS[J]. Computer Measurement & Control, 2013, 21(10): 2630-2631(in Chinese). [10] LIU F, WANG L X, TAN X S. Digital virtual flight testing and evaluation method for flight characteristics airworthiness compliance of civil aircraft based on HQRM[J]. Chinese Journal of Aeronautics, 2015, 28(1): 112-120. doi: 10.1016/j.cja.2014.12.013 [11] MI Y, WANG A L, SONG H. Research on mission characteristics-based evaluation model of flight test workload[J]. Journal of Physics:Conference Series, 2021, 1780(1): 012012. doi: 10.1088/1742-6596/1780/1/012012 [12] 郭夏菁. 刑事案件证据链类型化构建研究[D]. 上海: 华东政法大学, 2018: 24-42.GUO X J. The study of evidence chain typed construct in criminal case[D]. Shanghai: East China University of Political Science and Law, 2018: 24-42(in Chinese). [13] DING J H, HU X H, GUDIVADA V. A machine learning based framework for verification and validation of massive scale image data[J]. IEEE Transactions on Big Data, 2021, 7(2): 451-467. doi: 10.1109/TBDATA.2017.2680460 [14] 中国民用航空局. 中国民用航空规章 第25部: 运输类飞机适航标准: CCAR 25-R4[S]. 北京: 中国民用航空局, 2016.Civil Aviation Administration of China. China civil aviation regulations Part 25: Airworthiness standards for transport airplanes: CCAR 25-R4[S]. Beijing: Civil Aviation Administration of China, 2016(in Chinese). [15] Federal Aviation Administration. Advisory circular (AC): Approval of flight guidance systems, including change 1: AC 25.1329-1C[S]. Washington, D. C. : Federal Aviation Administration, 2014. [16] 中国民用航空局. 中国民用航空技术标准规定: 自动飞行导引与控制系统(AFGCS)设备: CTSO-C198[S]. 北京: 中国民用航空局, 2013.Civil Aviation Administration of China. China civil aviation technical standard order (CTSO): Automatic flight guidance and control system (AFGCS) equipment: CTSO-C198[S]. Beijing: Civil Aviation Administration of China, 2013(in Chinese). [17] Radio Technical Commission for Aeronautics. Design assurance guidance for airborne electronic hardware: RTCA DO-254[S]. Washington, D. C. : Radio Technical Commission for Aeronautics, 2000. [18] Radio Technical Commission for Aeronautics. Minimum operation performance standards (MOPS) for automatic flight guidance and control systems and equipment: RTCA DO-325[S]. Washington, D. C. : Radio Technical Commission for Aeronautics, 2010. [19] Society of Automotive Engineers International. Guidelines for development of civil aircraft and systems: SAE ARP4754A[S]. Washington, D. C.: Society of Automotive Engineers International, 2010. [20] Society of Automotive Engineers International. Guidelines and methods for conducting the safety assessment process on civil airborne systems and equipment: SAE ARP4761A[S]. Washington, D. C. : Society of Automotive Engineers International, 2023. [21] LIN M D, CUI G X, ZHANG Z S. Large eddy simulation of aircraft wake vortex with self-adaptive grid method[J]. Applied Mathematics and Mechanics, 2016, 37(10): 1289-1304. doi: 10.1007/s10483-016-2132-9 [22] 孙惠娟, 刘君, 彭春华. 基于分类概率综合多场景分析的分布式电源多目标规划[J]. 电力自动化设备, 2018, 38(12): 39-45.SUN H J, LIU J, PENG C H. Multi-objective DG planning based on classified probability integration multi-scenario analysis[J]. Electric Power Automation Equipment, 2018, 38(12): 39-45(in Chinese). [23] RATHORE P, KUMAR D, BEZDEK J C, et al. A rapid hybrid clustering algorithm for large volumes of high dimensional data[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(4): 641-654. doi: 10.1109/TKDE.2018.2842191 [24] WU D, MA J W. A two-layer mixture model of Gaussian process functional regressions and its MCMC EM algorithm[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(10): 4894-4904. doi: 10.1109/TNNLS.2017.2782711 [25] YAO L, GE Z Q. Scalable semisupervised GMM for big data quality prediction in multimode processes[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3681-3692. doi: 10.1109/TIE.2018.2856200 [26] MEHRNIA N, COLERI S. Wireless channel modeling based on extreme value theory for ultra-reliable communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(2): 1064-1076. doi: 10.1109/TWC.2021.3101422 [27] GUPTA N, KHOSRAVY M, PATEL N, et al. A bi-level evolutionary optimization for coordinated transmission expansion planning[J]. IEEE Access, 2018, 6: 48455-48477. doi: 10.1109/ACCESS.2018.2867954 [28] RAZI F F. A hybrid DEA-based K-means and invasive weed optimization for facility location problem[J]. Journal of Industrial Engineering International, 2019, 15(3): 499-511. doi: 10.1007/s40092-018-0283-5 [29] LIU W B, WANG Z D, YUAN Y, et al. A novel sigmoid-function-based adaptive weighted particle swarm optimizer[J]. IEEE Transactions on Cybernetics, 2021, 51(2): 1085-1093. doi: 10.1109/TCYB.2019.2925015 [30] 罗谦, 李琦, 文涛, 等. 机场到港旅客换乘时间效率评价指标优选[J]. 北京航空航天大学学报, 2022, 48(12): 2365-2372.LUO Q, LI Q, WEN T, et al. Optimization of transfer time efficiency evaluation index for airport arriving passengers[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2365-2372(in Chinese).