留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于符合性证据链的航电系统工程试验方法

钟伦珑 张卓轩 陈永刚

钟伦珑,张卓轩,陈永刚. 基于符合性证据链的航电系统工程试验方法[J]. 北京航空航天大学学报,2024,50(5):1500-1511 doi: 10.13700/j.bh.1001-5965.2022.0643
引用本文: 钟伦珑,张卓轩,陈永刚. 基于符合性证据链的航电系统工程试验方法[J]. 北京航空航天大学学报,2024,50(5):1500-1511 doi: 10.13700/j.bh.1001-5965.2022.0643
ZHONG L L,ZHANG Z X,CHEN Y G. Engineering test method for avionics system based on conformity evidence chain[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1500-1511 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0643
Citation: ZHONG L L,ZHANG Z X,CHEN Y G. Engineering test method for avionics system based on conformity evidence chain[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1500-1511 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0643

基于符合性证据链的航电系统工程试验方法

doi: 10.13700/j.bh.1001-5965.2022.0643
基金项目: 工业和信息化部专项科研基金(MJ-2017-S-44);航空科学基金(201908067001)
详细信息
    通讯作者:

    E-mail:zlunlong@163.com

  • 中图分类号: V216;TP391

Engineering test method for avionics system based on conformity evidence chain

Funds: Special Research Fund of Ministry of Industry and Information Technology (MJ-2017-S-44); Aeronautical Science Foundation of China (201908067001)
More Information
  • 摘要:

    为形成逻辑严密、可追溯的适航符合性验证资料,提出一种基于符合性证据链的航电系统工程试验方法,并对实现中的关键问题进行分析研究。以自动飞行控制系统的工程试验为例,设计与实现了基于自动飞行控制系统适航验证需求的验证平台。在验证方案设计中,针对复杂验证环境中部分参数不确定性描述问题,提出一种基于分类概率多场景分析的验证方案设计方法,基于适航验证需求,对飞行数据进行筛选,通过对筛选后的飞行数据进行统计特性分析、随机抽样与合并缩减,生成包含发生概率的确定性场景,描述验证环境中部分参数的不确定性。在验证数据分析中,针对多场景多参数条件下的适航符合性判断问题,提出基于加权Dempster-Shafer证据理论的适航符合性评估方法,以确定性场景发生概率为权重,进行证据融合,避免部分小概率场景对融合结果的干扰。基于实际飞行数据,自动飞行控制系统的自动飞行模式工程试验结果表明,所提方法有效可行。

     

  • 图 1  研制过程与工程试验双V图

    Figure 1.  Double V diagrams for design and engineering test

    图 2  符合性证据链

    Figure 2.  Conformity evidence chain

    图 3  基于符合性证据链的工程试验方法

    Figure 3.  Engineering test method based on conformity evidence chain

    图 4  验证平台功能框架

    Figure 4.  Functional framework of validation platform

    图 5  验证平台软件分层结构

    Figure 5.  Layered structure of validation platform software

    图 6  验证方案设计方法流程

    Figure 6.  Flow of design method for validation scheme

    图 7  基于加权D-S证据理论的适航符合性评估方法

    Figure 7.  Method of airworthiness conformity evaluation based on weighted D-S evidence theory

    图 8  验证飞行任务流程

    Figure 8.  Flow of validation flight mission

    图 9  爬升机动开始时刻、高度捕获开始时刻风速的统计直方图

    Figure 9.  Statistical histogram of wind speed at beginning of climbing maneuver and altitude capture

    图 10  基本概率赋值结果与场景权重系数折线图

    Figure 10.  Line chart of results of basic probability assignment function and scenario weighting coefficients

    表  1  AFCS工程试验验证需求与适航规范对应

    Table  1.   Relational table between AFCS airworthiness verification requirements and airworthiness specifications

    工程试验
    验证需求
    条款/规章 名称
    飞机级
    验证需求
    CCAR 25.671[14] 操纵系统总则
    CCAR 25.672[14] 增稳系统及自动和带动力的操纵
    系统
    CCAR 25.1309[14] 设备、系统及安装
    系统级(性能、环境、软件和硬件)验证需求 RTCA DO-178B[15] 机载系统和设备合格审定中的软件
    考虑
    RTCA DO-254[17] 机载电子硬件设计保证指南
    RTCA DO-325[18] 自动飞行导引和控制系统及设备的最低性能标准
    SAE ARP4754A[19] 关于高度综合或复杂的飞机系统的合格审定考虑
    SAE ARP4761A[20] 民用机载系统和设备安全性评估过程的指导原则和方法
    CTSO-C198[16] 自动飞行导引与控制系统(AFGCS)设备
    AC 25.1329-1C[15] 飞行导引系统的批准
    CCAR 25.603,
    CCAR 25.605,
    CCAR 25.1309,
    CCAR 25.1316,
    CCAR 25.1329[14]
    材料,制造方法,设备、系统及安装,系统闪电防护,飞行导引系统
    下载: 导出CSV

    表  2  验证需求矩阵

    Table  2.   Matrix of validation requirements

    适航规章/技术标准/咨询
    通告条款
    验证通过要求 验证需求
    等级
    CCAR 25.671(c)[14] 执行机构故障的情况下仍能继续安全飞行 纯飞机级
    需求
    CCAR 25.1309(b)、(d)[14] 极不可能发生妨碍安全飞行与机组处理的失效状态
    RTCA DO-325 2.2.10[18] 在不同的预设高度点从不同的垂直模式自动切换到高度获取模式
    CCAR 25.1329(c)[14] 飞行模式切换导致的航迹瞬变不能大于微小瞬变
    AC 25.1329-1C 64.g.(2).(h)[15] 在高度捕获期间,调整气压高度表不会导致高度捕获
    失败
    兼顾飞机级与系统级
    需求
    AC 25.1329-1C 64.g.(2).(i)[15] 从其他垂直模式自动切换到高度获取模式或高度获取模式工作时保持参考空速
    下载: 导出CSV

    表  3  AFCS架构映射

    Table  3.   Mapping of AFCS architecture

    机型 设备
    A320 FMGC,ELAC+SEC+FAC,FM(FMGC),FADEC,ADIRS
    B737 AFDC,PFC,FM(AIMS),EEC,ADM
    下载: 导出CSV

    表  4  AFCS工作模式映射

    Table  4.   Mapping of AFCS working modes

    机型 水平模式 垂直模式
    A320 NAV,HDG/TRK,LOC CLB,DES,ALT,V/S-FPA,
    EXPEDITE,G/S
    B737 LNAV,HDG/TRK,LOC VNAV,ALT,V/S-FPA,FLCH,G/S
    下载: 导出CSV

    表  5  部分场景的发生概率

    Table  5.   Occurrence probability of some scenarios

    场景序号 概率值 场景序号 概率值
    1 0.221 5 0.001
    2 0.105 6 0.006
    3 0.024 7 0.013
    4 0.037 8 0.005
    下载: 导出CSV

    表  6  场景1下验证通过条件变量基本概率赋值

    Table  6.   Basic probability assignment for conditional related variables under scenario 1

    证据体基本概率赋值
    满足验证需求不满足验证需求
    m10.90320.0978
    m20.75350.2475
    m30.87130.1297
    m40.84770.1533
    m50.81020.1908
    下载: 导出CSV

    表  7  场景1的基本概率赋值

    Table  7.   Basic probability assignment for scenario 1

    证据体 基本概率赋值
    满足验证需求 不满足验证需求
    k1 0.9996 0.0004
    下载: 导出CSV

    表  8  部分场景基本概率赋值结果

    Table  8.   Basic probability assignment results for some scenarios

    证据体权重系数基本概率赋值
    满足验证需求不满足验证需求
    k10.2210.99960.0004
    k20.1050.75940.2406
    k30.0240.84030.1597
    k40.0370.79050.2095
    k50.0010.26940.7306
    k60.0060.44170.5583
    k70.0130.38140.6186
    k80.0050.22070.7793
    下载: 导出CSV

    表  9  AFCS适航符合性分析结果

    Table  9.   AFCS airworthiness conformity analysis results

    算法基本概率赋值
    满足验证需求不满足验证需求
    传统证据理论0.62320.3768
    加权D-S证据理论0.73520.2648
    下载: 导出CSV
  • [1] 毛志威, 屈展文, 张彤, 等. 基于MBSE的民机审定试飞场景设计[J]. 系统工程与电子技术, 2020, 42(8): 1768-1775.

    MAO Z W, QU Z W, ZHANG T, et al. Design of civil aircraft certification test flight scenario based on MBSE[J]. Systems Engineering and Electronics, 2020, 42(8): 1768-1775(in Chinese).
    [2] LI H M, ZHANG X N, TANG C, et al. A functional requirements development and management approach applied to a civil aircraft program[C]//Proceedings of the Asia-Pacific International Symposium on Aerospace Technology. Berlin: Springer, 2019: 3025-3039.
    [3] VILJOEN D, HOLM J. A life cycle model for the development of airborne electronic equipment[J]. South African Journal of Industrial Engineering, 2017, 28(3): 89-104.
    [4] FENG T T, ZHAO Y R, HOU X J, et al. Research on software testing technique of airborne equipment based on airworthiness[J]. Procedia Engineering, 2011, 17: 489-496. doi: 10.1016/j.proeng.2011.10.059
    [5] Radio Technical Commission for Aeronautics. Software considerations in airborne systems and equipment certification: RTCA DO-178B[S]. Washington, D. C. : Radio Technical Commission for Aeronautics, 1992.
    [6] DU X Y, DU C L, CHEN J C, et al. A FACE-based simulation and verification approach for avionics systems[C]//Proceedings of the IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference. Piscataway: IEEE Press, 2019: 1509-1513.
    [7] ULBIG P, MÜLLER D, TORENS C, et al. Flight simulator-based verification for model-based avionics applications on multi-core targets[C]//Proceedings of the AIAA Scitech 2019 Forum. Reston: AIAA, 2019: 1976.
    [8] 高振兴, 徐彧. 民机自动飞行模式设计规范与适航性分析[J]. 航空计算技术, 2017, 47(3): 80-84.

    GAO Z X, XU Y. Design specification and airworthiness analysis of automatic flight modes for civil aircraft[J]. Aeronautical Computing Technique, 2017, 47(3): 80-84(in Chinese).
    [9] 黄雷, 禚真福, 岳崇旺, 等. 基于飞行自动控制系统的单机件综合测试平台设计[J]. 计算机测量与控制, 2013, 21(10): 2630-2631.

    HUANG L, GAO Z F, YUE C W, et al. Design of single unit testing platform of AFCS[J]. Computer Measurement & Control, 2013, 21(10): 2630-2631(in Chinese).
    [10] LIU F, WANG L X, TAN X S. Digital virtual flight testing and evaluation method for flight characteristics airworthiness compliance of civil aircraft based on HQRM[J]. Chinese Journal of Aeronautics, 2015, 28(1): 112-120. doi: 10.1016/j.cja.2014.12.013
    [11] MI Y, WANG A L, SONG H. Research on mission characteristics-based evaluation model of flight test workload[J]. Journal of Physics:Conference Series, 2021, 1780(1): 012012. doi: 10.1088/1742-6596/1780/1/012012
    [12] 郭夏菁. 刑事案件证据链类型化构建研究[D]. 上海: 华东政法大学, 2018: 24-42.

    GUO X J. The study of evidence chain typed construct in criminal case[D]. Shanghai: East China University of Political Science and Law, 2018: 24-42(in Chinese).
    [13] DING J H, HU X H, GUDIVADA V. A machine learning based framework for verification and validation of massive scale image data[J]. IEEE Transactions on Big Data, 2021, 7(2): 451-467. doi: 10.1109/TBDATA.2017.2680460
    [14] 中国民用航空局. 中国民用航空规章 第25部: 运输类飞机适航标准: CCAR 25-R4[S]. 北京: 中国民用航空局, 2016.

    Civil Aviation Administration of China. China civil aviation regulations Part 25: Airworthiness standards for transport airplanes: CCAR 25-R4[S]. Beijing: Civil Aviation Administration of China, 2016(in Chinese).
    [15] Federal Aviation Administration. Advisory circular (AC): Approval of flight guidance systems, including change 1: AC 25.1329-1C[S]. Washington, D. C. : Federal Aviation Administration, 2014.
    [16] 中国民用航空局. 中国民用航空技术标准规定: 自动飞行导引与控制系统(AFGCS)设备: CTSO-C198[S]. 北京: 中国民用航空局, 2013.

    Civil Aviation Administration of China. China civil aviation technical standard order (CTSO): Automatic flight guidance and control system (AFGCS) equipment: CTSO-C198[S]. Beijing: Civil Aviation Administration of China, 2013(in Chinese).
    [17] Radio Technical Commission for Aeronautics. Design assurance guidance for airborne electronic hardware: RTCA DO-254[S]. Washington, D. C. : Radio Technical Commission for Aeronautics, 2000.
    [18] Radio Technical Commission for Aeronautics. Minimum operation performance standards (MOPS) for automatic flight guidance and control systems and equipment: RTCA DO-325[S]. Washington, D. C. : Radio Technical Commission for Aeronautics, 2010.
    [19] Society of Automotive Engineers International. Guidelines for development of civil aircraft and systems: SAE ARP4754A[S]. Washington, D. C.: Society of Automotive Engineers International, 2010.
    [20] Society of Automotive Engineers International. Guidelines and methods for conducting the safety assessment process on civil airborne systems and equipment: SAE ARP4761A[S]. Washington, D. C. : Society of Automotive Engineers International, 2023.
    [21] LIN M D, CUI G X, ZHANG Z S. Large eddy simulation of aircraft wake vortex with self-adaptive grid method[J]. Applied Mathematics and Mechanics, 2016, 37(10): 1289-1304. doi: 10.1007/s10483-016-2132-9
    [22] 孙惠娟, 刘君, 彭春华. 基于分类概率综合多场景分析的分布式电源多目标规划[J]. 电力自动化设备, 2018, 38(12): 39-45.

    SUN H J, LIU J, PENG C H. Multi-objective DG planning based on classified probability integration multi-scenario analysis[J]. Electric Power Automation Equipment, 2018, 38(12): 39-45(in Chinese).
    [23] RATHORE P, KUMAR D, BEZDEK J C, et al. A rapid hybrid clustering algorithm for large volumes of high dimensional data[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(4): 641-654. doi: 10.1109/TKDE.2018.2842191
    [24] WU D, MA J W. A two-layer mixture model of Gaussian process functional regressions and its MCMC EM algorithm[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(10): 4894-4904. doi: 10.1109/TNNLS.2017.2782711
    [25] YAO L, GE Z Q. Scalable semisupervised GMM for big data quality prediction in multimode processes[J]. IEEE Transactions on Industrial Electronics, 2019, 66(5): 3681-3692. doi: 10.1109/TIE.2018.2856200
    [26] MEHRNIA N, COLERI S. Wireless channel modeling based on extreme value theory for ultra-reliable communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(2): 1064-1076. doi: 10.1109/TWC.2021.3101422
    [27] GUPTA N, KHOSRAVY M, PATEL N, et al. A bi-level evolutionary optimization for coordinated transmission expansion planning[J]. IEEE Access, 2018, 6: 48455-48477. doi: 10.1109/ACCESS.2018.2867954
    [28] RAZI F F. A hybrid DEA-based K-means and invasive weed optimization for facility location problem[J]. Journal of Industrial Engineering International, 2019, 15(3): 499-511. doi: 10.1007/s40092-018-0283-5
    [29] LIU W B, WANG Z D, YUAN Y, et al. A novel sigmoid-function-based adaptive weighted particle swarm optimizer[J]. IEEE Transactions on Cybernetics, 2021, 51(2): 1085-1093. doi: 10.1109/TCYB.2019.2925015
    [30] 罗谦, 李琦, 文涛, 等. 机场到港旅客换乘时间效率评价指标优选[J]. 北京航空航天大学学报, 2022, 48(12): 2365-2372.

    LUO Q, LI Q, WEN T, et al. Optimization of transfer time efficiency evaluation index for airport arriving passengers[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2365-2372(in Chinese).
  • 加载中
图(10) / 表(9)
计量
  • 文章访问数:  510
  • HTML全文浏览量:  112
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-27
  • 录用日期:  2022-09-09
  • 网络出版日期:  2022-11-28
  • 整期出版日期:  2024-05-29

目录

    /

    返回文章
    返回
    常见问答