留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不确定非线性系统的自适应滑模区域到达控制

孙晓明 马辛 刘烨 周悦 邢博闻

孙晓明,马辛,刘烨,等. 不确定非线性系统的自适应滑模区域到达控制[J]. 北京航空航天大学学报,2024,50(8):2482-2491 doi: 10.13700/j.bh.1001-5965.2022.0647
引用本文: 孙晓明,马辛,刘烨,等. 不确定非线性系统的自适应滑模区域到达控制[J]. 北京航空航天大学学报,2024,50(8):2482-2491 doi: 10.13700/j.bh.1001-5965.2022.0647
SUN X M,MA X,LIU Y,et al. Adaptive sliding mode region reaching control for uncertain nonlinear systems[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2482-2491 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0647
Citation: SUN X M,MA X,LIU Y,et al. Adaptive sliding mode region reaching control for uncertain nonlinear systems[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2482-2491 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0647

不确定非线性系统的自适应滑模区域到达控制

doi: 10.13700/j.bh.1001-5965.2022.0647
基金项目: 国家自然科学基金(61873196);中央高校基本科研业务费专项资金(YWF-23-L-826);上海巿智能信息处理重点实验室开放基金(IIPL201904);上海海洋大学科技发展专项基金(A2-2006-21-200207); 科技创新2030-“量子通信与量子计算机”重大项目(2021ZD0303400);高性能船舶技术重点实验室开放基金(GXNC23052801)
详细信息
    通讯作者:

    E-mail:maxin@buaa.edu.cn

  • 中图分类号: V249.1;TP273

Adaptive sliding mode region reaching control for uncertain nonlinear systems

Funds: National Natural Science Foundation of China (61873196); The Fundamental Research Funds for the Central Universities (YWF-23-L-826); Open Research Program of Shanghai Key Lab of Intelligent Information Processing (IIPL201904); Development of Science and Technology Foundation of Shanghai Ocean University (A2-2006-21-200207); Science and Technology Innovation 2030-Quantum Communication and Quantum Computer Major Projects (2021ZD0303400); Open Fund of Key Laboratory of High Performance Ship Technology (GXNC23052801)
More Information
  • 摘要:

    针对一类参数严格反馈型不确定非线性系统,考虑存在外界干扰的情况下,设计一种基于反推方法的自适应滑模区域到达控制器,提高系统对非匹配不确定性及未知干扰的鲁棒性。与传统的设定点控制或位置控制不同,区域到达算法的控制目标是一个以期望点为中心的目标区域。所设计控制器综合了人工势场法、自适应控制、反推技术、滑模控制和Lyapunov方法。利用人工势场法设计目标势能函数,将区域误差引入势能函数中,结合Lyapunov方法,可以实现对目标区域的到达跟踪控制。采用基于反推的区域控制思想,将高阶整体模型分解为低阶子系统,并分别设计相应的滑模面,同时在前n-1步中结合自适应律,能够在线估计非线性系统的不确定参数项,增加所设计控制器的适用性。基于Lyapunov理论证明闭环系统的全局渐近稳定性,仿真结果表明:所设计控制器有效。

     

  • 图 1  目标区域示例

    Figure 1.  Examples of the desired target region

    图 2  x轴方向区域跟踪曲线

    Figure 2.  Tracking curve of region reaching on the x-axis

    图 3  y轴方向区域跟踪曲线

    Figure 3.  Tracking curve of region reaching on the y-axis

    图 4  区域误差

    Figure 4.  Regional errors

    图 5  目标区域到达势能函数${P}(\Delta {\boldsymbol{X}})$

    Figure 5.  Target region reaching potential energy function ${P}(\Delta {\boldsymbol{X}})$

    图 6  系统输出跟踪曲线

    Figure 6.  Trajectory tracking curve of the system output

    图 7  参数估计${\hat \theta _i}$

    Figure 7.  Parameters estimation ${\hat \theta _i}$

    图 8  方形区域到达控制

    Figure 8.  Region reaching control for a square

    图 9  方形区域到达误差

    Figure 9.  Arrival error in square area

    图 10  方形区域到达势能函数${P}(\Delta {\boldsymbol{X}})$

    Figure 10.  Potential energy function ${P}(\Delta {\boldsymbol{X}})$ of region reaching for a square

  • [1] KRUPA P, LIMON D, ALAMO T. Harmonic based model predictive control for set-point tracking[J]. IEEE Transactions on Automatic Control, 2022, 67(1): 48-62. doi: 10.1109/TAC.2020.3047579
    [2] ZHANG G Q, ZHANG X K. A novel DVS guidance principle and robust adaptive path-following control for underactuated ships using low frequency gain-learning[J]. ISA Transactions, 2015, 56: 75-85. doi: 10.1016/j.isatra.2014.12.002
    [3] YAN Z P, ZHANG M Y, ZHANG C, et al. Decentralized formation trajectory tracking control of multi-AUV system with actuator saturation[J]. Ocean Engineering, 2022, 255: 111423. doi: 10.1016/j.oceaneng.2022.111423
    [4] SHAO X D, HU Q L, GUO L. Adaptive spacecraft attitude tracking control with guaranteed transient performance[C]//Proceedings of the Chinese Control Conference. Piscataway: IEEE Press, 2017: 9442-9447.
    [5] ZHANG H G, ZHANG X K, CAO T, et al. Active disturbance rejection control for ship path following with Euler method[J]. Ocean Engineering, 2022, 247: 110516. doi: 10.1016/j.oceaneng.2021.110516
    [6] AILON A, AROGETI S. On set-point control of a quadrotor-type helicopter with a suspended load[C]//Proceedings of the International Conference on Control, Automation and Robotics. Piscataway: IEEE Press, 2016: 194-199.
    [7] KOWALCZYK W, PRZYBYLA M, KOZLOWSKI K. Set-point control of mobile robot with obstacle detection and avoidance using navigation function-experimental verification[J]. Journal of Intelligent & Robotic Systems, 2017, 85(3): 539-552.
    [8] ANNAMALAI A S K, SUTTON R, YANG C, et al. Robust adaptive control of an uninhabited surface vehicle[J]. Journal of Intelligent & Robotic Systems, 2015, 78(2): 319-338.
    [9] AILON A. Simple tracking controllers for autonomous VTOL aircraft with bounded inputs[J]. IEEE Transactions on Automatic Control, 2010, 55(3): 737-743. doi: 10.1109/TAC.2010.2040493
    [10] CHEAH C C, SUN Y C. Region reaching control for robots with uncertain kinematics and dynamics[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2006: 2577-2582.
    [11] CHEAH C C, WANG D Q. Region reaching control of robots: Theory and experiments[C]//Proceedings of the International Conference on Robotics and Automation. Piscataway: IEEE Press, 2005, 974-979.
    [12] BOUTERAA Y, BEN ABDALLAH I, GHOMMAM J. Task-space region-reaching control for medical robot manipulator[J]. Computers & Electrical Engineering, 2018, 67: 629-645.
    [13] YU J W, ZHANG X H, JI J C, et al. Region-reaching control of a flexible-joint manipulator[J]. Journal of Dynamic Systems, Measurement, and Control, 2020, 142(11): 114503. doi: 10.1115/1.4047697
    [14] 杨沁林, 张劲. 机械臂目标区域跟踪防撞控制[J]. 四川大学学报(自然科学版), 2022, 59(3): 77-86.

    YANG Q L, ZHANG J. Region tracking and collision avoidance control for the manipulator[J]. Journal of Sichuan University (Natural Science Edition), 2022, 59(3): 77-86 (in Chinese).
    [15] CONTI R, FANELLI F, MELI E, et al. A free floating manipulation strategy for Autonomous Underwater Vehicles[J]. Robotics and Autonomous Systems, 2017, 87: 133-146. doi: 10.1016/j.robot.2016.09.018
    [16] ISMAIL Z H. Region boundary-based control scheme for an underwater vehicle with an edge-based segmentation approach[C]//Proceedings of the IEEE International Conference on Robotics and Biomimetics. Piscataway: IEEE Press, 2011: 2137-2142.
    [17] ISMAIL Z H, DUNNIGAN M W. Tracking control scheme for an underwater vehicle-manipulator system with single and multiple sub-regions and sub-task objectives[J]. IET Control Theory & Applications, 2011, 5(5): 721-735.
    [18] ISMAIL Z H, DUNNIGAN M W. A region boundary-based control scheme for an autonomous underwater vehicle[J]. Ocean Engineering, 2011, 38(17-18): 2270-2280. doi: 10.1016/j.oceaneng.2011.10.002
    [19] MUKHERJEE K, KAR I N, BHATT R K P. Region tracking control of an autonomous underwater vehicle without velocity measurement[C]//Proceedings of the International Conference on Modelling, Identification & Control. Piscataway: IEEE Press, 2014: 213-218.
    [20] ISMAIL Z H, MOKHAR M B M, PUTRANTI V W E, et al. A robust dynamic region-based control scheme for an autonomous underwater vehicle[J]. Ocean Engineering, 2016, 111: 155-165. doi: 10.1016/j.oceaneng.2015.10.052
    [21] CHEAH C C, WANG D Q, SUN Y C. Region-reaching control of robots[J]. IEEE Transactions on Robotics, 2007, 23(6): 1260-1264. doi: 10.1109/TRO.2007.909808
    [22] KHALIL H K. Nonlinear systems[M]. 2nd ed. Upper Saddle River: Prentice Hall, 1996.
    [23] PARK J H, JONG LEE Y. Robust visual servoing for motion control of the ball on a plate[J]. Mechatronics, 2003, 13(7): 723-738. doi: 10.1016/S0957-4158(02)00039-9
    [24] JANKOVIC M, SEPULCHRE R, KOKOTOVIC P V. Constructive Lyapunov stabilization of nonlinear cascade systems[J]. IEEE Transactions on Automatic Control, 1996, 41(12): 1723-1735. doi: 10.1109/9.545712
    [25] WANG N, SUN J C, HAN M, et al. Adaptive approximation-based regulation control for a class of uncertain nonlinear systems without feedback linearizability[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(8): 3747-3760. doi: 10.1109/TNNLS.2017.2738918
    [26] ZHAO X D, WANG X Y, ZONG G D, et al. Adaptive neural tracking control for switched high-order stochastic nonlinear systems[J]. IEEE Transactions on Cybernetics, 2017, 47(10): 3088-3099. doi: 10.1109/TCYB.2017.2684218
    [27] SUN W, SU S F, WU Y Q, et al. Adaptive fuzzy control with high-order barrier Lyapunov functions for high-order uncertain nonlinear systems with full-state constraints[J]. IEEE Transactions on Cybernetics, 2020, 50(8): 3424-3432. doi: 10.1109/TCYB.2018.2890256
    [28] MAN Y C, LIU Y G. Global adaptive stabilization and practical tracking for nonlinear systems with unknown powers[J]. Automatica, 2019, 100: 171-181. doi: 10.1016/j.automatica.2018.11.011
    [29] YOUNG K D, UTKIN V I, OZGUNER U. A control engineer’s guide to sliding mode control[J]. IEEE Transactions on Control Systems Technology, 1999, 7(3): 328-342. doi: 10.1109/87.761053
    [30] ZHAO D Y, LI S Y, ZHU Q M. Output feedback terminal sliding mode control for a class of second order nonlinear systems[J]. Asian Journal of Control, 2013, 15(1): 237-247. doi: 10.1002/asjc.500
    [31] 华森, 张天平, 朱秋琴, 等. 带有未知死区的机器人自适应滑模控制[J]. 中南大学学报(自然科学版), 2009, 40(S1): 102-107.

    HUA S, ZHANG T P, ZHU Q Q, et al. Adaptive sliding mode control of robot with unknown dead zone[J]. Journal of Central South University (Science and Technology), 2009, 40(S1): 102-107 (in Chinese).
    [32] 陈志梅, 王贞艳, 张井岗. 滑模变结构控制理论及应用[M]. 北京: 电子工业出版社, 2012.

    CHEN Z M, WANG Z Y, ZHANG J G. Sliding mode variable structure control theory and application[M]. Beijing: Publishing House of Electronics Industry, 2012 (in Chinese).
    [33] KRSTIC M, KANELLAKOPOULOS I, KOKOTOVIC P V. Nonlinear design of adaptive controllers for linear systems[J]. IEEE Transactions on Automatic Control, 1994, 39(4): 738-752. doi: 10.1109/9.286250
    [34] KRSTIC M, KANELLAKOPOULOS I, KOKOTOVIC P V. Nonlinear and adaptive control design[M]. New York: Wiley, 1995.
    [35] YU J P, SHI P, ZHAO L. Finite-time command filtered backstepping control for a class of nonlinear systems[J]. Automatica, 2018, 92: 173-180. doi: 10.1016/j.automatica.2018.03.033
    [36] 曹伟, 乔金杰, 孙明. 永磁直线电机扰动估计与补偿的位置反步控制[J]. 控制与决策, 2020, 35(6): 1409-1414.

    CAO W, QIAO J J, SUN M. Backstepping control of disturbance estimation and compensation for permanent magnet linear motor[J]. Control and Decision, 2020, 35(6): 1409-1414(in Chinese).
    [37] 王坚浩, 胡剑波. 一类非匹配不确定非线性系统的鲁棒跟踪控制[J]. 控制与决策, 2011, 26(5): 727-731.

    WANG J H, HU J B. Robust tracking control for a class of nonlinear systems with unmatched uncertainties[J]. Control and Decision, 2011, 26(5): 727-731(in Chinese).
  • 加载中
图(10)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  38
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-27
  • 录用日期:  2023-07-14
  • 网络出版日期:  2023-12-19
  • 整期出版日期:  2024-08-28

目录

    /

    返回文章
    返回
    常见问答