留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

斜置槽道在翼型失速控制中的应用

杨光宇 张扬 胡澜翔 付一帆

杨光宇,张扬,胡澜翔,等. 斜置槽道在翼型失速控制中的应用[J]. 北京航空航天大学学报,2024,50(8):2601-2618 doi: 10.13700/j.bh.1001-5965.2022.0652
引用本文: 杨光宇,张扬,胡澜翔,等. 斜置槽道在翼型失速控制中的应用[J]. 北京航空航天大学学报,2024,50(8):2601-2618 doi: 10.13700/j.bh.1001-5965.2022.0652
YANG G Y,ZHANG Y,HU L X,et al. Application of inclined slot in airfoil stall control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2601-2618 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0652
Citation: YANG G Y,ZHANG Y,HU L X,et al. Application of inclined slot in airfoil stall control[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2601-2618 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0652

斜置槽道在翼型失速控制中的应用

doi: 10.13700/j.bh.1001-5965.2022.0652
基金项目: 国家自然科学基金(11602199)
详细信息
    通讯作者:

    E-mail:youngz@xjtu.edu.cn

  • 中图分类号: V221+.3

Application of inclined slot in airfoil stall control

Funds: National Natural Science Foundation of China (11602199)
More Information
  • 摘要:

    翼型失速问题是风力机设计过程中需要重点考虑的气动现象,而引起失速的主要原因是附面层内流动能量不足,无法提供足够的附着力。利用翼型内部开槽,将大迎角状态时翼型下方的高动量气流引射进上部分离区可以有效解决这一问题。为了设计出具有更好气动特性的开槽翼型,研究了在不同宽度下2种不同形状的开槽对翼型气动特性的影响,通过观察不同开槽翼型的流场图和分析不同开槽翼型槽内、槽出口的气流流速,优化出具有更好气动特性的开槽翼型。经过优化设计的开槽翼型在深失速环境下,失速迎角增大了8°,相较于初始翼型,有了较大的气动性能的提升,并证明了开槽在较大迎角时有改善翼型气动特性的特征。

     

  • 图 1  研究模型

    Figure 1.  Research model

    图 2  计算域展示

    Figure 2.  Demonstration of computational domain

    图 3  网格收敛性研究结果

    Figure 3.  Results of mesh convergence research

    图 4  计算使用的网格

    Figure 4.  Mesh used in present computation

    图 5  直开槽翼型几何参数

    Figure 5.  Geometric parameters of straight slotin airfoil

    图 6  直开槽翼型与基准翼型升、阻力系数对比

    Figure 6.  Comparison of lift and drag coefficient between straight slotted airfoils and reference airfoils

    图 7  直开槽翼型和基准翼型的升阻比

    Figure 7.  Lift-drag ratio of straight slotted and reference airfoils

    图 8  基准翼型和直开槽翼型的流场分布

    Figure 8.  Flow field distribution for baseline and straight slotted airfoils

    图 9  不同迎角下直开槽翼型气流流速变化

    Figure 9.  Changes in airflow velocity at different angles of attack of straight slot airfoil

    图 10  2种不同槽道宽度的直槽道翼型模型

    Figure 10.  Two straight slot airfoil models with different slot widths

    图 11  不同宽度直开槽翼型升、阻力系数和升阻比变化

    Figure 11.  Lift and drag coefficients and lift-drag ratio changes of straight slotted airfoil models with different widths

    图 12  槽道尺寸为d=0.005c下不同α的流场

    Figure 12.  Flow field of airfoil with a d=0.05c straight slot at different angles of α

    图 13  槽道尺寸为d=0.08c下不同α的流场

    Figure 13.  Flow field of airfoil with a d=0.08c straight slot at different angles of α

    图 14  不同α下不同宽度直开槽翼型气流流速的变化

    Figure 14.  Flow velocity of airfoils with straight slots of different widths at different angles of attack

    图 15  弧形开槽翼型几何参数

    Figure 15.  Geometric parameters of curved slotted airfoils

    图 16  弧形开槽翼型和基准翼型升、阻力系数对比

    Figure 16.  Comparison of lift drag coefficient between curved slotted airfoil and reference airfoil

    图 17  弧形开槽翼型和基准翼型升阻比对比

    Figure 17.  Contrast diagram of lift to drag ratio between curved slotted airfoil and reference airfoil

    图 18  不同α下弧形开槽翼型流场分布

    Figure 18.  Flow field distribution of curved slotted airfoils at different angles of attack

    图 19  不同迎角下直开槽翼型和弧形开槽翼型气流流速的变化

    Figure 19.  Under different angles of attack, the airflow velocities vary for airfoils with straight slots and airfoils with curved slots

    图 20  2种不同槽道宽度的弧形槽道翼型模型

    Figure 20.  Two cambered slot airfoil models with different slot widths

    图 21  不同宽度弧形开槽翼型升、阻力系数和升阻比变化

    Figure 21.  Lift and drag coefficients and lift-drag ratio changes of different models

    图 22  不同α下2种弧形开槽翼型的流场分布

    Figure 22.  Flow field distribution of two curved slotted airfoils at different angles of attack

    图 23  不同α下不同宽度弧形开槽翼型气流流速的变化

    Figure 23.  The variation of airflow velocity for curved slotted airfoils with different slot widths at various angles of attack

    图 24  优化后开槽翼型几何模型

    Figure 24.  Diagram of optimized slotted airfoil geometry model

    图 25  l型开槽翼型和基准翼型升、阻力系数对比

    Figure 25.  Lift and drag coefficient comparison between l-shaped optimized slotted and reference airfoils

    图 26  l型开槽翼型和基准翼型升阻比曲线对比

    Figure 26.  Comparison of lift-drag ratio curves between l-shaped optimized slotted airfoil and reference airfoil

    图 27  不同α下基准翼型和l型开槽翼型流场对比

    Figure 27.  Comparison of the flow fields of the two airfoil types with reference airfoil and l-slot airfoil under different attack angles

    图 28  不同α下1型开槽翼型气流流速的变化

    Figure 28.  The variation of airflow velocity for l-shaped slotted airfoils at different angles of attack

    表  1  网格收敛性研究使用的网格簇

    Table  1.   Cluster of mesh used in mesh convergence studies

    网格类型 节点数量 网格数量
    粗网格 10 404 10 200
    中网格A 18 727 18 420
    中网格B 19 927 19 620
    细网格 24 827 24 420
    下载: 导出CSV
  • [1] KHALED M, IBRAHIM M M, ABDEL HAMED H E, et al. Investigation of a small Horizontal-Axis wind turbine performance with and without winglet[J]. Energy, 2019, 187: 115921. doi: 10.1016/j.energy.2019.115921
    [2] ZHU B, SUN X J, WANG Y, et al. Performance characteristics of a horizontal axis turbine with fusion winglet[J]. Energy, 2017, 120: 431-440. doi: 10.1016/j.energy.2016.11.094
    [3] MNAFAR-SEFIDDASHTI M, NILI-AHMADABADI M, SAEEDI-RIZI B, et al. Visualization of flow over a thick airfoil with circular cross-sectional riblets at low Reynolds numbers[J]. Journal of Visualization, 2019, 22(5): 877-888. doi: 10.1007/s12650-019-00576-3
    [4] SEFIDDASHTI M N, NILI-AHMADABADI M, RIZI B S. Experimental study of effects of circular-cross-section riblets on the aerodynamic performance of Risø airfoil at transient flow regime[J]. Journal of Mechanical Science and Technology, 2018, 32(2): 709-716. doi: 10.1007/s12206-018-0119-z
    [5] BELAMADI R, DJEMILI A, ILINCA A, et al. Aerodynamic performance analysis of slotted airfoils for application to wind turbine blades[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 151: 79-99. doi: 10.1016/j.jweia.2016.01.011
    [6] SEO S H, HONG C H. Performance improvement of airfoils for wind blade with the groove[J]. International Journal of Green Energy, 2016, 13(1): 34-39. doi: 10.1080/15435075.2014.910777
    [7] AFUNGCHUI D, KAMOUN B, HELALI A. Vortical structures in the wake of the savonius wind turbine by the discrete vortex method[J]. Renewable Energy, 2014, 69: 174-179. doi: 10.1016/j.renene.2014.03.038
    [8] LI X K, LIU W, ZHANG T J, et al. Experimental and numerical analysis of the effect of vortex generator installation angle on flow separation control[J]. Energies, 2019, 12(23): 4583. doi: 10.3390/en12234583
    [9] ARAMENDIA I, SAENZ-AGUIRRE A, FERNANDEZ-GAMIZ U, et al. Gurney flap implementation on a DU91W250 airfoil[C]//Proceedings of the 2nd International Research Conference on Sustainable Energy, Engineering, Materials and Environment. Basel: MDPI, 2018, 1448: 2-6.
    [10] NIKOUEEYAN P, STRIKE J A, MAGSTADT A S, et al. Aerodynamic response of a wind turbine airfoil to gurney flap deployment[C]// Proceedings of the 33rd Wind Energy Symposium. Reston: AIAA, 2015.
    [11] FRANCIS P H. Variable-camber rib for aeroplane-wings: US1341758[P]. 1920-06-01.
    [12] WEICK F E, SHORTAL J A . The effect of multiple fixed slots and a trailing-edge flap on the lift and drag of a Clark Y airfoil, NACA-TR-427[R]. Boston: The National Advisory Committee for Aeronautics, 1933:531-536.
    [13] DIDANE D H, MOHD S, SUBARI Z, et al. An aerodynamic performance analysis of a perforated wind turbine blade[J]. IOP Conference Series: Materials Science and Engineering, 2016, 160: 012039. doi: 10.1088/1757-899X/160/1/012039
    [14] IBRAHIM M, ALSULTAN A, SHEN S H, et al. Advances in horizontal axis wind turbine blade designs: introduction of slots and tubercle[J]. Journal of Energy Resources Technology, 2015, 137(5): 051205. doi: 10.1115/1.4030399
    [15] PRINCE S A, BADALAMENTI C, REGAS C. The application of passive air jet vortex-generators to stall suppression on wind turbine blades[J]. Wind Energy, 2017, 20(1): 109-123. doi: 10.1002/we.1994
    [16] RAMZI M, ABDERRAHMANE G. Passive control via slotted blading in a compressor cascade at stall condition[J]. Journal of Applied Fluid Mechanics, 2013, 6(4): 3-9.
    [17] NI Z, DHANAK M, SU T. Improved performance of a slotted blade using a novel slot design[J]. Journal of Wind Engineering and Industrial, 34(44): 2-9.
    [18] MOHAMED O S, IBRAHIM A A, ETMAN A K, et al. Numerical investigation of Darrieus wind turbine with slotted airfoil blades[J]. Energy Conversion and Management: X, 2020, 5: 100026. doi: 10.1016/j.ecmx.2019.100026
    [19] SIMMS D, SCHRECK S, HAND M, et al. NREL unsteady aerodynamics experiment in the NASA-Ames wind tunnel: A comparison of predictions to measurements, NREL/TP-500-29494[R]. Golden: National Renewable Energy Laboratory, 2001: 24-51.
    [20] MOSHFEGHI M, SHAMS S, HUR N. Aerodynamic performance enhancement analysis of horizontal axis wind turbines using a passive flow control method via split blade[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 167: 148-159. doi: 10.1016/j.jweia.2017.04.001
    [21] MENTER F. Improved two-equation $k {\text{-}}\omega $ turbulence models for aerpdynamic flows: NASA-TM 103975[R]. Washington D. C.: NASA, 1992.
  • 加载中
图(28) / 表(1)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  92
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-27
  • 录用日期:  2022-10-04
  • 网络出版日期:  2022-12-02
  • 整期出版日期:  2024-08-28

目录

    /

    返回文章
    返回
    常见问答