留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种改进的星载GNSS-R森林生物量反演方法

周勋 郑南山 丁锐 章恒一 何佳星

周勋,郑南山,丁锐,等. 一种改进的星载GNSS-R森林生物量反演方法[J]. 北京航空航天大学学报,2024,50(8):2619-2626 doi: 10.13700/j.bh.1001-5965.2022.0654
引用本文: 周勋,郑南山,丁锐,等. 一种改进的星载GNSS-R森林生物量反演方法[J]. 北京航空航天大学学报,2024,50(8):2619-2626 doi: 10.13700/j.bh.1001-5965.2022.0654
ZHOU X,ZHENG N S,DING R,et al. An improved inversion method of forest biomass based on satellite GNSS-R[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2619-2626 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0654
Citation: ZHOU X,ZHENG N S,DING R,et al. An improved inversion method of forest biomass based on satellite GNSS-R[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2619-2626 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0654

一种改进的星载GNSS-R森林生物量反演方法

doi: 10.13700/j.bh.1001-5965.2022.0654
基金项目: 国家自然科学基金(41974039);自然资源部国土环境与灾害监测重点实验室开放基金(LEDM2021B11);江苏省研究生科研与实践创新计划(KYCX22_2595);中国矿业大学研究生创新计划项目(2022WLJCRCZL256)
详细信息
    通讯作者:

    E-mail: znshcumt@163.com

  • 中图分类号: P237

An improved inversion method of forest biomass based on satellite GNSS-R

Funds: National Natural Science Foundation of China (41974039); Open Research Fund of Key Laboratory of Land Environment and Disaster Monitoring, Ministry of Natural Resources (LEDM2021B11); Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX22_2595); Graduate Innovation Program of China University of Mining and Technology (2022WLJCRCZL256)
More Information
  • 摘要:

    基于Tau-Omega模型提出一种涉及地面土壤湿度修正的星载全球导航卫星系统反射测量(GNSS-R)森林地上生物量反演方法。选择SMAP卫星的土壤湿度作为辅助数据,运用Tau-Omega模型对旋风卫星导航系统(CYGNSS)反射率做出改正,提高建模参数的准确性。将SMAP卫星提供的植被光学深度(VOD)和地上植被生物量(AGB)地图作为生物量参考数据,比较了改正前后观测值与参考数据的相关性变化。结果表明,改正后相关系数提升明显,改正后参数较反射率与VOD的相关系数从0.54提升到了0.67,与AGB的相关系数从0.46提升到了0.56。随后通过人工神经网络分别基于改正后的参数和反射率建立GNSS-R VOD和AGB反演模型。结果表明,所提方法能够有效提高VOD和AGB的反演精度,且在生物量水平较低的地区改进效果更优。对于VOD反演,改进后相关系数从0.70提升到了0.83,RMES从0.21降低到了0.17;对于AGB反演,改进后相关系数从0.61提升到了0.71,RMES从74 t/hm2 降低到了65 t/hm2

     

  • 图 1  $ \tau $与$ \cos (\theta ) $的关系

    Figure 1.  The relationship between $ \tau $ and $ \cos (\theta ) $

    图 2  SMAP植被光学深度8月至12月平均值

    Figure 2.  Average VOD of SMAP from August to December

    图 3  亚马逊地区AGB

    Figure 3.  AGB of the Amazon region

    图 4  CYGNSS反射率8月至12月平均值

    Figure 4.  Average reflectivity of CYGNSS from August to December

    图 5  实验区域

    Figure 5.  Experimental area

    图 6  人工神经网络示意

    Figure 6.  Schematic diagram of an artificial neural network

    图 7  人工神经网反演VOD结果

    Figure 7.  Inversion results of VOD by artificial neural network

    图 8  人工神经网反演AGB结果

    Figure 8.  Inversion results of AGB by artificial neural network

    表  1  不同植被类型单次散射反照率

    Table  1.   Single scattering albedo corresponding to different vegetation types

    植被类型$ {\omega ^{\rm{canopy}}} $
    常绿针叶林、常绿阔叶林0.07
    落叶针叶林、落叶阔叶林0.07
    混交林0.07
    封闭的灌木地、开放的灌木地0.05
    多树草原0.05
    稀树草原0.08
    草原0.05
    下载: 导出CSV

    表  2  不同入射角下的相关系数

    Table  2.   Correlation coefficients at different incident angles

    角度/(°) 反射率与VOD 反射率与AGB
    [0~10] −0.53 −0.46
    [10~20] −0.53 −0.46
    [20~30] −0.52 −0.45
    [30~40] −0.53 −0.47
    [40~50] −0.57 −0.49
    [50~60] −0.58 −0.49
    [60~70] −0.56 −0.46
    [70~80] −0.37 −0.28
    下载: 导出CSV

    表  3  改进前后相关系数

    Table  3.   Correlation coefficients before and after improvement

    参考数据 反射率 $ \tau $ $ {\tau _{{\mathrm{corr}}}} $
    VOD −0.54 0.51 0.67
    AGB −0.46 0.42 0.56
    下载: 导出CSV

    表  4  相关系数和RMSE

    Table  4.   Correlation coefficient and RMSE

    参考数据 相关系数 RMSE
    VOD AGB/(t·hm−2 VOD AGB/(t·hm−2
    改进前 0.70 0.61 0.21 74
    改进后 0.83 0.71 0.17 65
    下载: 导出CSV
  • [1] 范文义, 张海玉, 于颖, 等. 三种森林生物量估测模型的比较分析[J]. 植物生态学报, 2011, 35(4): 402-410. doi: 10.3724/SP.J.1258.2011.00402

    FAN W Y, ZHANG H Y, YU Y, et al. Comparison of three models of forest biomass estimation[J]. Chinese Journal of Plant Ecology, 2011, 35(4): 402-410(in Chinese). doi: 10.3724/SP.J.1258.2011.00402
    [2] KELLER M. Revised method for forest canopy height estimation from geoscience laser altimeter system waveforms[J]. Journal of Applied Remote Sensing, 2007, 1(1): 013537. doi: 10.1117/1.2795724
    [3] CHAVE J, ANDALO C, BROWN S, et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests[J]. Oecologia, 2005, 145(1): 87-99. doi: 10.1007/s00442-005-0100-x
    [4] CARRENO-LUENGO H, LUZI G, CROSETTO M. Above-ground biomass retrieval over tropical forests: A novel GNSS-R approach with CyGNSS[J]. Remote Sensing, 2020, 12(9): 1368. doi: 10.3390/rs12091368
    [5] BAGHDADI N, LE MAIRE G, BAILLY J S, et al. Evaluation of ALOS/PALSAR L-band data for the estimation of eucalyptus plantations aboveground biomass in Brazil[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(8): 3802-3811. doi: 10.1109/JSTARS.2014.2353661
    [6] LE TOAN T, QUEGAN S, DAVIDSON M W J, et al. The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle[J]. Remote Sensing of Environment, 2011, 115(11): 2850-2860. doi: 10.1016/j.rse.2011.03.020
    [7] GONÇALVES F, TREUHAFT R, LAW B, et al. Estimating aboveground biomass in tropical forests: Field methods and error analysis for the calibration of remote sensing observations[J]. Remote Sensing, 2017, 9(1): 47. doi: 10.3390/rs9010047
    [8] WU X R, GUO P, SUN Y Q, et al. Recent progress on vegetation remote sensing using spaceborne GNSS-reflectometry[J]. Remote Sensing, 2021, 13(21): 4244. doi: 10.3390/rs13214244
    [9] ULABY F T. Microwave remote sensing, active and passive[J]. Microwave Remote Sensing Fundamentals and Radiometry, 1981, 1: 191-208.
    [10] 吴学睿, 李颖, 李传龙. 基于Bi-Mimics模型的GNSS-R农作物生物量监测理论研究[J]. 遥感技术与应用, 2012, 27(2): 220-230.

    WU X R, LI Y, LI C L. Research on crop biomass monitoring using GNSS-R technique based on Bi-Mimics model[J]. Remote Sensing Technology and Application, 2012, 27(2): 220-230(in Chinese).
    [11] CHEW C, SHAH R, ZUFFADA C, et al. Demonstrating soil moisture remote sensing with observations from the UK TechDemoSat-1 satellite mission[J]. Geophysical Research Letters, 2016, 43(7): 3317-3324. doi: 10.1002/2016GL068189
    [12] CAMPS A, PARK H, PABLOS M, et al. Sensitivity of GNSS-R spaceborne observations to soil moisture and vegetation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4730-4742. doi: 10.1109/JSTARS.2016.2588467
    [13] CARRENO-LUENGO H, LOWE S T, ZUFFADA C, et al. Spaceborne GNSS-R from the SMAP mission: First assessment of polarimetric scatterometry[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2017: 4095-4098.
    [14] WAN W, JI R, LIU B J, et al. A two-step method to calibrate CYGNSS-derived land surface reflectivity for accurate soil moisture estimations[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 19: 2500405.
    [15] SANTI E, PALOSCIA S, PETTINATO S, et al. Remote sensing of forest biomass using GNSS reflectometry[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2993, 13: 2351-2368.
    [16] SANTI E, CLARIZIA M P, COMITE D, et al. Detecting fire disturbances in forests by using GNSS reflectometry and machine learning: A case study in Angola[J]. Remote Sensing of Environment, 2022, 270: 112878. doi: 10.1016/j.rse.2021.112878
    [17] ZHAN Q, VALL-LLOSSERA M, PABLOS M, et al. Improving the rice yield estimation using SMOS and CYGNSS GNSS-R data[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2020: 5254-5257.
    [18] KERR Y H, WALDTEUFEL P, RICHAUME P, et al. The SMOS soil moisture retrieval algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5): 1384-1403. doi: 10.1109/TGRS.2012.2184548
    [19] O’NEILL P, BINDLISH R, CHAN S, et al. Algorithm theoretical basis document level 2 & 3 soil moisture (passive) data products[EB/OL]. (2021-10-12)[2022-04-13]. https://nsidc.org/data/smap/data.
    [20] DONG Z N, JIN S G. Evaluation of the land GNSS-reflected DDM coherence on soil moisture estimation from CYGNSS data[J]. Remote Sensing, 2021, 13(4): 570. doi: 10.3390/rs13040570
    [21] O'NEILL P, CHAN S, NJOKU E, et al. SMAP enhanced L3 radiometer global and polar grid daily 9 km EASE-Grid soil moisture, Version 5[EB/OL]. Boulder: NASA National Snow and Ice Data Center Distributed Active Archive Center, 2021(2021-10-12)[2022-04-13]. https://doi.org/10.5067/4DQ54OUIJ9DL.
    [22] AVITABILE V, HEROLD M, HEUVELINK G B M, et al. An integrated pan-tropical biomass map using multiple reference datasets[J]. Global Change Biology, 2016, 22(4): 1406-1420. doi: 10.1111/gcb.13139
    [23] SAATCHI S S, HARRIS N L, BROWN S, et al. Benchmark map of forest carbon stocks in tropical regions across three continents[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(24): 9899-9904.
    [24] BACCINI A, GOETZ S J, WALKER W S, et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps[J]. Nature Climate Change, 2012, 2: 182-185. doi: 10.1038/nclimate1354
    [25] JENSEN K, MCDONALD K, PODEST E, et al. Assessing L-band GNSS-reflectometry and imaging radar for detecting sub-canopy inundation dynamics in a tropical wetlands complex[J]. Remote Sensing, 2018, 10(9): 1431. doi: 10.3390/rs10091431
    [26] YUEH S H, SHAH R, CHAUBELL M J, et al. A semiempirical modeling of soil moisture, vegetation, and surface roughness impact on CYGNSS reflectometry data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 60: 5800117.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  457
  • HTML全文浏览量:  105
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-27
  • 录用日期:  2022-09-02
  • 网络出版日期:  2022-11-08
  • 整期出版日期:  2024-08-28

目录

    /

    返回文章
    返回
    常见问答