留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于像素偏振相机的新型光弹技术应用

苏飞 毋少华 刘云鹏

苏飞,毋少华,刘云鹏. 基于像素偏振相机的新型光弹技术应用[J]. 北京航空航天大学学报,2024,50(8):2432-2438 doi: 10.13700/j.bh.1001-5965.2022.0667
引用本文: 苏飞,毋少华,刘云鹏. 基于像素偏振相机的新型光弹技术应用[J]. 北京航空航天大学学报,2024,50(8):2432-2438 doi: 10.13700/j.bh.1001-5965.2022.0667
SU F,WU S H,LIU Y P. Application of new photoelastic technology based on pixelated polarization camera[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2432-2438 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0667
Citation: SU F,WU S H,LIU Y P. Application of new photoelastic technology based on pixelated polarization camera[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2432-2438 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0667

基于像素偏振相机的新型光弹技术应用

doi: 10.13700/j.bh.1001-5965.2022.0667
基金项目: 国家自然科学基金(12072008)
详细信息
    通讯作者:

    E-mail:sufei@buaa.edu.cn

  • 中图分类号: O348.1

Application of new photoelastic technology based on pixelated polarization camera

Funds: National Natural Science Foundation of China (12072008)
More Information
  • 摘要:

    像素偏振相机与传统光弹方法相结合是近20年来发展起来的一种新型应力测试技术,其克服了传统光弹方法抗环境光干扰能力弱、定量测试操作复杂、很难实现实时测量等缺点。基于此,介绍了该方法的工作原理,并通过2个实例展示了该方法在适应复杂环境及高精度测试方面的巨大技术优势。给出了该新型光弹技术的若干前瞻性应用建议,包括玻璃幕墙安装应力的高效率检测及钢化玻璃内部缺陷的在线检测等。

     

  • 图 1  基于像素偏振相机的光弹方法原理

    Figure 1.  Principle of photoelastic method based on pixelated polarization camera

    图 2  新型光弹方法在应力测试方面的优势展示

    Figure 2.  Advantages of new photoelastic method in stress testing

    图 3  标准1/4波片的DoLP实测值

    Figure 3.  Measured DoLP value of a standard 1/4 wave plate

    图 4  新型光弹技术对钢-钢化玻璃结构受载过程中内部应力场的实时监测

    Figure 4.  Real-time monitoring of internal stress field of steel-tempered glass structure under load by new photoelatic technology

    图 5  新型光弹技术用于玻璃光弹系数的测量结果

    Figure 5.  Measurement of photoelastic coefficient of glass by new photoelastic technology

  • [1] 雷振坤. 结构分析数字光测力学[M]. 大连: 大连理工大学出版社, 2012.

    LEI Z K. Digital photomechanics for structural analysis[M]. Dalian: Dalian University of Technology Press, 2012(in Chinese).
    [2] ASUNDI A, TONG L, BOAY C G. Dynamic phase-shifting photoelasticity[J]. Applied Optics, 2001, 40(22): 3654-3658. doi: 10.1364/AO.40.003654
    [3] KRAMER S L B, BEIERMANN B A, WHITE S R, et al. Simultaneous observation of phase-stepped images for photoelasticity using diffraction gratings[J]. Experimental Mechanics, 2013, 53(8): 1343-1355. doi: 10.1007/s11340-013-9747-0
    [4] NORDIN G P, MEIER J T, DEGUZMAN P C, et al. Micropolarizer array for infrared imaging polarimetry[J]. Journal of the Optical Society of America A, 1999, 16(5): 1168-1174. doi: 10.1364/JOSAA.16.001168
    [5] 马宣. 高性能像素偏振相机的研制与相关应用研究[D]. 合肥: 中国科学技术大学, 2019.

    MA X. Development of high-performance pixelated-polarization-camera and related application research[D]. Hefei: University of Science and Technology of China, 2019(in Chinese).
    [6] ZHANG Z G, DONG F L, CHENG T, et al. Nano-fabricated pixelated micropolarizer array for visible imaging polarimetry[J]. The Review of Scientific Instruments, 2014, 85(10): 105002. doi: 10.1063/1.4897270
    [7] ARANCHUK V, LAL A K, HESS C F, et al. Pulsed spatial phase-shifting digital shearography based on a micropolarizer camera[J]. Optical Engineering, 2018, 57: 024109.
    [8] ONUMA T, OTANI Y. A development of two-dimensional birefringence distribution measurement system with a sampling rate of 1.3 MHz[J]. Optics Communications, 2014, 315: 69-73. doi: 10.1016/j.optcom.2013.10.086
    [9] KUNNEN B, MACDONALD C, DORONIN A, et al. Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media[J]. Journal of Biophotonics, 2015, 8(4): 317-323. doi: 10.1002/jbio.201400104
    [10] ZHANG Z G, DONGF L, QIAN K M, et al. Real-time phase measurement of optical vortices based on pixelated micropolarizer array[J]. Optics Express, 2015, 23(16): 20521-20528. doi: 10.1364/OE.23.020521
    [11] SAKAUE K, YONEYAMA S, KIKUTA H, et al. Evaluating crack tip stress field in a thin glass plate under thermal load[J]. Engineering Fracture Mechanics, 2008, 75(5): 1015-1026. doi: 10.1016/j.engfracmech.2007.04.025
    [12] YONEYAMA S, KAMIHORIUCHI H. A method for evaluating full-field stress components from a single image in interferometric photoelasticity[J]. Measurement Science and Technology, 2009, 20(7): 075302. doi: 10.1088/0957-0233/20/7/075302
    [13] 尚奇. 光学玻璃在大功率连续激光辐照下的应力研究[D]. 南京: 南京理工大学, 2020.

    SHANG Q. Study on stress of optical glass under high power continuous laser irradiation[D]. Nanjing: Nanjing University of Science and Technology, 2020(in Chinese).
    [14] GOLDSTEIN D H. Polarizedlight[M]. New York: CRC Press, 2016.
    [15] 杨洁, 金伟其, 裘溯, 等. 考虑偏振片非理想性的可见光偏振成像修正模型[J]. 光学精密工程, 2020, 28(2): 334-339.

    YANG J, JIN W Q, QIU S, et al. Correction model for visible light polarization imaging considering non-ideality of polarizers[J]. Optics and Precision Engineering, 2020, 28(2): 334-339(in Chinese).
    [16] SU F, WANG Z J. Error analysis and correction of a photoelastic method based on a pixelated polarization camera[J]. Optics and Lasers in Engineering, 2023, 161: 107374. doi: 10.1016/j.optlaseng.2022.107374
  • 加载中
图(5)
计量
  • 文章访问数:  277
  • HTML全文浏览量:  85
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-28
  • 录用日期:  2023-01-30
  • 网络出版日期:  2023-03-08
  • 整期出版日期:  2024-08-28

目录

    /

    返回文章
    返回
    常见问答