留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于检测和重识别的无人机行人跟踪算法

张嘉辉 赵威 王子琛 蒙志君

张嘉辉,赵威,王子琛,等. 基于检测和重识别的无人机行人跟踪算法[J]. 北京航空航天大学学报,2024,50(8):2538-2546 doi: 10.13700/j.bh.1001-5965.2022.0675
引用本文: 张嘉辉,赵威,王子琛,等. 基于检测和重识别的无人机行人跟踪算法[J]. 北京航空航天大学学报,2024,50(8):2538-2546 doi: 10.13700/j.bh.1001-5965.2022.0675
ZHANG J H,ZHAO W,WANG Z C,et al. UAV pedestrian tracking algorithm based on detection and re-identification[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2538-2546 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0675
Citation: ZHANG J H,ZHAO W,WANG Z C,et al. UAV pedestrian tracking algorithm based on detection and re-identification[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2538-2546 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0675

基于检测和重识别的无人机行人跟踪算法

doi: 10.13700/j.bh.1001-5965.2022.0675
基金项目: 国家自然科学基金(61976014)
详细信息
    通讯作者:

    E-mail:mengzhijun@buaa.edu.cn

  • 中图分类号: V279+.2

UAV pedestrian tracking algorithm based on detection and re-identification

Funds: National Natural Science Foundation of China (61976014)
More Information
  • 摘要:

    将智能检测跟踪算法与无人机(UAV)的灵活性相结合是UAV应用的研究热点。针对UAV的视角及运动导致目标滑移和遮挡的问题,提出一种基于检测和重识别的UAV行人跟踪算法。对训练好的YOLOv5进行TensorRT加速,解决UAV计算资源有限的问题;以量化加速的目标检测算法与重识别算法为基础,构建行人跟踪算法框架;设计判定行人匹配度,完成行人匹配系统设计。仿真试验表明:训练后的YOLOv5和OSNet具备一定的精度,采用TensorRT加速后的YOLOv5网络在保证精度的情况下,帧率有了近50%的提升。飞行试验表明:所提算法在行人穿插及障碍物遮挡的情况下,可以实现对目标的稳定跟踪,具备一定的实用性和有效性。

     

  • 图 1  YOLOv5组件构成

    Figure 1.  Components of YOLOv5

    图 2  YOLOv5-s网络结构

    Figure 2.  Network structure of YOLOv5-s

    图 3  OSNet构建块

    Figure 3.  Building block for OSNet

    图 4  孪生结构

    Figure 4.  Siamese architecture

    图 5  基于检测和重识别的目标跟踪框架

    Figure 5.  Target tracking framework based on detection and re-identification

    图 6  基于重识别的行人匹配算法结构

    Figure 6.  Pedestrian matching algorithm structure based on re-identification

    图 7  SiamFC跟踪器遮挡测试结果

    Figure 7.  Occlusion test results of SiamFC tracker

    图 8  本文算法遮挡测试结果

    Figure 8.  Occlusion test results of the proposed algorithm

    图 9  无人机飞行试验平台

    Figure 9.  UAV flight test platform

    图 10  行人跟踪飞行试验

    Figure 10.  Pedestrian tracking flight test

    图 11  行人干扰飞行试验

    Figure 11.  Pedestrian interference flight test

    图 12  障碍物遮挡飞行试验

    Figure 12.  Obstacle occlusion flight test

    表  1  PC端目标检测算法测试结果

    Table  1.   Test results of target detection algorithm on PC

    检测模型正确率召回率AP@0.5
    YOLOv30.5140.3830.391
    YOLOv5-n0.4130.2970.284
    YOLOv5-s0.5680.3730.402
    下载: 导出CSV

    表  2  TensorRT在Jetson Xavier NX模块上的测试结果

    Table  2.   Test results of TensorRT on Jetson Xavier NX module

    深度学习
    框架
    功率/W 在线CPU
    个数
    Jetson clock AP@0.5 帧率/
    (帧·S−1)
    Pytorch 15 2 开启 0.402 24.8
    TensorRT 15 2 开启 0.401 37.4
    下载: 导出CSV

    表  3  PC端re-id算法测试结果

    Table  3.   Test results of re-id algorithm on PC

    重识别算法mAPRank1Rank5Rank10
    DenseNet0.6430.8470.9430.963
    OSNet0.6700.8640.9460.965
    下载: 导出CSV
  • [1] 葛向然. 无人机在情报领域应用前景[J]. 电子世界, 2019(19): 98-99.

    GE X R. Application prospect of UAV in intelligence field[J]. Electronics World, 2019(19): 98-99 (in Chinese).
    [2] SONKA M, HLAVAC V, BOYLE R. 图像处理、分析与机器视觉[M] . 3版. 艾海舟,苏延超,兴军亮,等. 北京: 清华大学出版社, 2011.

    SONKA M, HLAVAC V, BOYLE R. Image processing, analysis, and machine vision[M]. 3rd ed. AI H Z, SU Y C, Xing J L, et al, translated. Beijing: Tsinghua University Press, 2011(in Chinese).
    [3] BEAUCHEMIN S S, BARRON J L. The computation of optical flow[J]. ACM Computing Surveys, 1995, 27(3): 433-466. doi: 10.1145/212094.212141
    [4] HERRERO-JARABA E, ORRITE-URUÑUELA C, SENAR J. Detected motion classification with a double-background and a neighborhood-based difference[J]. Pattern Recognition Letters, 2006, 24(12): 2079-2092.
    [5] CUCCHIARA R, GRANA C, PICCARDI M, et al. Detecting moving objects, ghosts, and shadows in video streams[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(10): 1337-1342. doi: 10.1109/TPAMI.2003.1233909
    [6] BRAGANETO U, GOUTSIAS J. Object-based image analysis using multiscale connectivity[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 892-907. doi: 10.1109/TPAMI.2005.124
    [7] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 779-788.
    [8] REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 6517-6525.
    [9] REDMON J, FARHADI A. YOLOv3: An incremental improvement[EB/OL]. (2018-04-08)[2022-08-01]. http://arxiv.org/abs/1804.02767.
    [10] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
    [11] ZHANG N, DONAHUE J, GIRSHICK R, et al. Part-based R-CNNs for fine-grained category detection[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2014: 834-849.
    [12] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2015: 1440-1448.
    [13] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9):1904-1916.
    [14] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]//Proceedings of the IEEE Transactions on Pattern Analysis and Machine Intelligence. Piscataway: IEEE Press, 2017: 1137-1149.
    [15] BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2010: 2544-2550.
    [16] HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]//Pro.ceedings of the European Conference on Computer Vision. Berlin: Springer, 2012: 702-715.
    [17] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596. doi: 10.1109/TPAMI.2014.2345390
    [18] DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 1090-1097.
    [19] MA C, HUANG J B, YANG X K, et al. Hierarchical convolutional features for visual tracking[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2015: 3074-3082.
    [20] NAM H, HAN B. Learning multi-domain convolutional neural networks for visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 4293-4302.
    [21] NAM H, BAEK M, HAN B. Modeling and propagating CNNs in a tree structure for visual tracking[EB/OL]. (2016-08-25)[2022-08-01]. http://arxiv.org/abs/1608.07242.
    [22] HELD D, THRUN S, SAVARESE S. Learning to track at 100 FPS with deep regression networks[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2016: 749-765.
    [23] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2016: 850-865.
    [24] GUO Q, FENG W, ZHOU C, et al. Learning dynamic Siamese network for visual object tracking[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 1781-1789.
    [25] LI B, YAN J J, WU W, et al. High performance visual tracking with Siamese region proposal network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 8971-8980.
    [26] QIAN X L, FU Y W, JIANG Y G, et al. Multi-scale deep learning architectures for person re-identification[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 5409-5418.
    [27] ZHOU K Y, YANG Y X, CAVALLARO A, et al. Omni-scale feature learning for person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 3701-3711.
    [28] SUN Y F, ZHENG L, YANG Y, et al. Beyond part models: Person retrieval with refined part pooling and a strong convolutional baseline[C]//Proceedings of the Europwan Conference on Computer Vision. Berlin: Springer, 2018: 501–518.
    [29] SU C, LI J N, ZHANG S L, et al. Pose-driven deep convolutional model for person re-identification[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 3980-3989.
    [30] FANG P F, JI P, PETERSSON L, et al. Set augmented triplet loss for video person re-identification[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE Press, 2021: 464-473.
    [31] SUN Y F, CHENG C M, ZHANG Y H, et al. Circle loss: A unified perspective of pair similarity optimization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 6397-6406.
    [32] ZHU P F, WEN L Y, DU D W, et al. Detection and tracking meet drones challenge[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(11): 7380-7399. doi: 10.1109/TPAMI.2021.3119563
    [33] ZHENG L, SHEN L Y, TIAN L, et al. Scalable person re-identification: A benchmark[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2015: 1116-1124.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  274
  • HTML全文浏览量:  109
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-01
  • 录用日期:  2022-12-30
  • 网络出版日期:  2023-01-19
  • 整期出版日期:  2024-08-28

目录

    /

    返回文章
    返回
    常见问答