留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钢轨打磨车专用EHA非线性反演控制

王海波 何欢 邹怀静 聂勇

王海波,何欢,邹怀静,等. 钢轨打磨车专用EHA非线性反演控制[J]. 北京航空航天大学学报,2024,50(8):2439-2448 doi: 10.13700/j.bh.1001-5965.2022.0681
引用本文: 王海波,何欢,邹怀静,等. 钢轨打磨车专用EHA非线性反演控制[J]. 北京航空航天大学学报,2024,50(8):2439-2448 doi: 10.13700/j.bh.1001-5965.2022.0681
WANG H B,HE H,ZOU H J,et al. Nonlinear backstepping control of special EHA for rail grinding vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2439-2448 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0681
Citation: WANG H B,HE H,ZOU H J,et al. Nonlinear backstepping control of special EHA for rail grinding vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2439-2448 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0681

钢轨打磨车专用EHA非线性反演控制

doi: 10.13700/j.bh.1001-5965.2022.0681
基金项目: 四川省科技厅计划应用基础研究项目(2021YJ0029);西南交通大学轨道交通运维技术与装备四川省重点实验室开放课题(2020YW001)
详细信息
    通讯作者:

    E-mail:haibowang@home.swjtu.edu.cn

  • 中图分类号: U216;TH137

Nonlinear backstepping control of special EHA for rail grinding vehicles

Funds: Science and Technology Department's Planned Application Basic Research Project of Sichuan Porvince(2021YJ0029); Open Research Project of Technology and Equipment of Rail Transit Operation and Maintenance Key Laboratory of South West Jiaotong University (2020YW001)
More Information
  • 摘要:

    为提高钢轨打磨车打磨钢轨的平顺性及稳定性,提出以电动静液作动器(EHA)代替传统液压作动系统作为钢轨打磨车的专用执行器,考虑柱塞泵的总效率波动和液压缸动静摩擦差异大2个非线性因素,建立非线性数学模型;建立EHA的MATLAB、AMESim联合仿真模型,对PID控制、滑模变结构控制、反演控制进行控制策略对比研究,仿真分析验证反演控制在响应快速性及稳定性方面具有良好的表现。搭建四象限平台对EHA进行反演控制负载试验,结果表明:其位移控制精度达0.21 mm,具有较好的控制性能。

     

  • 图 1  专用EHA液压原理

    1. 弹簧增压油箱;2. 单向阀;3. 过滤器;4. 压力变送器;5. 溢流阀;6. 双向定排量变转速泵;7. 伺服电机;8. 平衡阀;9. 电磁换向阀;10. 位移传感器;11. 双作用对称缸。

    Figure 1.  Hydraulic principle of special EHA

    图 2  EHA的反演控制系统模型

    Figure 2.  Backstepping control system model of EHA

    图 3  EHA的联合仿真模型

    Figure 3.  Joint simulation model of EHA

    图 4  不同控制策略仿真结果

    Figure 4.  Simulation results of different control strategies

    图 5  钢轨打磨车专用EHA

    Figure 5.  Special EHA for rail grinding vehicle

    图 6  EHA控制性能试验的流程图

    Figure 6.  Control performance test flow chart of EHA

    图 7  反演控制样机试验结果

    Figure 7.  Test results of backstepping control prototype

    图 8  EHA四象限试验台架

    Figure 8.  Four quadrant test bench of EHA

    图 9  正负载至负负载样机试验

    Figure 9.  Prototype test from positive load to negative load

    图 10  负负载至正负载样机试验

    Figure 10.  Prototype test from negative load to positive load

    表  1  EHA设计指标

    Table  1.   Design indexes of EHA

    行程/mm 负载力/KN 速度/(mm·s−1 位移全尺寸精度/%
    100 ≤10 ≥20 ≤0.77
    下载: 导出CSV

    表  2  摩擦模型相关参数

    Table  2.   Relevant parameters of friction model

    ${{{\sigma _0}} / ({{\mathrm{N}} \cdot {\mathrm{m}}}})$ ${{{\sigma _1}} /( {{\mathrm{N}} \cdot {\mathrm{m}}}} \cdot {{\mathrm{s}}^{ - 1}})$ ${{{\sigma _2}} /( {{\mathrm{N}} \cdot {\mathrm{m}} \cdot {{\mathrm{s}}^{ - 1}}}})$ ${{{v_{\mathrm{s}}}} /({{\mathrm{N}} \cdot {\mathrm{m}} \cdot {{\mathrm{s}}^{ - 1}}}})$ ${{ {{f_{\mathrm{c}}}} } /{{\mathrm{kN}}}}$ ${{ {{f_{\mathrm{s}}}} }/ {{\mathrm{kN}}}}$
    $ 2.1\times {10}^{7} $ 0.1 150 0.1 142 12
    下载: 导出CSV

    表  3  EHA仿真参数

    Table  3.   Simulation parameters of EHA

    参数 数值
    油缸有效行程/mm 100
    油缸直径/mm 63
    活塞杆直径/mm 35
    泵额定转速/(r·min−1 3000
    泵排量/(ml·r−1) 1
    溢流压力/MPa 8
    转子惯量/($ \mathrm{k}\mathrm{g}\cdot{{\mathrm{m}}}^{2} $) $ 2.7\times {10}^{-5} $
    线电阻/Ω 5.5
    线电感/H $ 9.6\times {10}^{-3} $
    反电势常数/($ \mathrm{V}\cdot \mathrm{m}\cdot {{\mathrm{r}}}^{-1} $) $ 3.2\times {10}^{-2} $
    下载: 导出CSV

    表  4  不同控制策略仿真数据

    Table  4.   Simulation data of different control strategies

    控制策略 上升时间/s 控制精度/mm 最大超调量占比/%
    PID控制 4.97 0.037 0.08
    滑模变结构控制 2.74 0.642 1.28
    反演控制 3.56 0.035 0.07
    下载: 导出CSV

    表  5  反演控制试验数据

    Table  5.   Backstepping control test data

    反演代表参数 上升时间/s 控制精度/mm 最大超调量占比/%
    $ {k}_{1}=200 $ 8.49 0.09 0.18
    $ {k}_{1}=300 $ 5.54 0.72 1.43
    $ {k}_{1}=350 $ 4.62 0.65 1.31
    $ {k}_{1}=400 $ 4.12 0.77 1.54
    下载: 导出CSV
  • [1] 铁道技术监督编辑部. 新时代交通强国铁路先行规划纲要[J]. 铁道技术监督, 2020, 48(9): 1-6. doi: 10.3969/j.issn.1006-9178.2020.09.001

    Editorial Department of Railway Quality Control. Outline of powerful nation railway advance planning in the new era[J]. Railway Quality Control, 2020, 48(9): 1-6 (in Chinese). doi: 10.3969/j.issn.1006-9178.2020.09.001
    [2] SCHOCH W. Rail grinding strategies for achieving optimum results: An inventory[J]. Rail Engineering International, 2008, 37(1): 4-6.
    [3] 李军. 钢轨打磨技术及其应用[J]. 铁路采购与物流, 2017, 12(3): 59-60. doi: 10.3969/j.issn.1673-7121.2017.03.015

    LI J. Rail grinding technology and its application[J]. Railway Purchasing and Logistics, 2017, 12(3): 59-60 (in Chinese). doi: 10.3969/j.issn.1673-7121.2017.03.015
    [4] SATOH Y, IWAFUCHI K. Effect of rail grinding on rolling contact fatigue in railway rail used in conventional line in Japan[J]. Wear, 2008, 265(9-10): 1342-1348. doi: 10.1016/j.wear.2008.02.036
    [5] SROBA P, RONEY M. Rail grinding best practices[C]//Proceedings of the Annual Conference of the American Railway Engineering and Maintenance of Way Association. Chicago: IL, 2003: 1-41.
    [6] KALOUSEK J, SROBA P, MAGEL E. Shuswap subdivision rail samples metallographic examination of high and low rails from sharp curves[R]. Washington, D. C. : NRC, 2000.
    [7] 熊志林, 陶建峰, 张峰榕, 等. 采用状态估计的泵控非对称液压缸模型预测控制[J]. 西安交通大学学报, 2017, 51(4): 109-115.

    XIONG Z L, TAO J F, ZHANG F R, et al. A model predictive control strategy of pump-controlled asymmetric cylinders using state estimation[J]. Journal of Xi’an Jiaotong University, 2017, 51(4): 109-115 (in Chinese).
    [8] 纪铁铃, 齐海涛, 滕雅婷. 基于AMESim和MATLAB联合仿真的EHA滑模变结构控制分析[J]. 液压与气动, 2016(3): 19-24. doi: 10.11832/j.issn.1000-4858.2016.03.004

    JI T L, QI H T, TENG Y T. Analysis of sliding-mode control for EHA based on AMESim and MATLAB co-simulation[J]. Chinese Hydraulics & Pneumatics, 2016(3): 19-24 (in Chinese). doi: 10.11832/j.issn.1000-4858.2016.03.004
    [9] 付永领, 王利剑, 齐海涛, 等. 基于DSP和CPLD的电动静液作动器双余度控制器设计[J]. 测控技术, 2010, 29(1): 39-43. doi: 10.3969/j.issn.1000-8829.2010.01.013

    FU Y L, WANG L J, QI H T, et al. Design of dual-redundancy control system for electro-hydrostatic actuator based on DSP and CPLD[J]. Measurement & Control Technology, 2010, 29(1): 39-43 (in Chinese). doi: 10.3969/j.issn.1000-8829.2010.01.013
    [10] 张星晴, 段富海. 基于遗传算法的EHA调速系统设计与优化[J]. 计算机仿真, 2014, 31(8): 32-36. doi: 10.3969/j.issn.1006-9348.2014.08.008

    ZHANG X Q, DUAN F H. Design and optimization of EHA speed control system based on genetic algorithm[J]. Computer Simulation, 2014, 31(8): 32-36 (in Chinese). doi: 10.3969/j.issn.1006-9348.2014.08.008
    [11] KOKOTOVIC P, ARCAK M. Constructive nonlinear control: Progress in the 90's[C]//Proceedings of the IFAC. Beijing: IFAC , 1999, 32(2): 49-77.
    [12] 冯娜娜. 钢轨打磨设备及运用[M]. 成都: 西南交通大学出版社, 2017: 6-8.

    FENG N N. Rail grinding equipment and its application[M]. Chengdu: Southwest Jiaotong University Press, 2017: 6-8 (in Chinese).
    [13] 舒志兵. 交流伺服运动控制系统[M]. 北京: 清华大学出版社, 2006: 20-33.

    SHU Z B. AC servo motion control system[M]. Beijing: Tsinghua University Press, 2006: 20-33 (in Chinese).
    [14] 王春行. 液压控制系统[M]. 北京: 机械工业出版社, 2011: 60-65.

    WANG C X. Hydraulic control system[M]. Beijing: China Machine Press, 2011: 60-65(in Chinese).
    [15] 付永领, 李祝锋, 祁晓野, 等. 轴向柱塞式电液泵能量转化效率研究[J]. 机械工程学报, 2014, 50(14): 204-212. doi: 10.3901/JME.2014.14.204

    FU Y L, LI Z F, QI X Y, et al. Research on the energy conversion efficiency of axial piston electro-hydraulic pump[J]. Journal of Mechanical Engineering, 2014, 50(14): 204-212 (in Chinese). doi: 10.3901/JME.2014.14.204
    [16] 王林鸿, 吴波, 杜润生, 等. 液压缸运动的非线性动态特征[J]. 机械工程学报, 2007, 43(12): 12-19. doi: 10.3321/j.issn:0577-6686.2007.12.003

    WANG L H, WU B, DU R S, et al. Nonlinear dynamic characteristics of moving hydraulic cylinder[J]. Chinese Journal of Mechanical Engineering, 2007, 43(12): 12-19 (in Chinese). doi: 10.3321/j.issn:0577-6686.2007.12.003
    [17] CANUDAS DE WIT C, OLSSON H, ASTROM K J, et al. A new model for control of systems with friction[J]. IEEE Transactions on Automatic Control, 1995, 40(3): 419-425. doi: 10.1109/9.376053
    [18] ZHOU Z, ZHENG X D, WANG Q, et al. Modeling and simulation of point contact multibody system dynamics based on the 2D LuGre friction model[J]. Mechanism and Machine Theory, 2021, 158: 104244. doi: 10.1016/j.mechmachtheory.2021.104244
    [19] 邹怀静, 王海波, 王鑫, 等. 高功率密度微型斜盘式柱塞泵虚拟样机仿真分析[J]. 机床与液压, 2022, 50(10): 148-153. doi: 10.3969/j.issn.1001-3881.2022.10.028

    ZOU H J, WANG H B, WANG X, et al. Virtual prototype simulation analysis of high power density miniature axial piston pump[J]. Machine Tool & Hydraulics, 2022, 50(10): 148-153 (in Chinese). doi: 10.3969/j.issn.1001-3881.2022.10.028
    [20] 何建海, 张建霞. 基于AMESim及MATLAB/Simulink联合仿真的风帆转角复合控制[J]. 机床与液压, 2022, 50(4): 140-145. doi: 10.3969/j.issn.1001-3881.2022.04.027

    HE J H, ZHANG J X. Compound control of the sail angle based on AMESim-MATLAB/simulink co-simulation[J]. Machine Tool & Hydraulics, 2022, 50(4): 140-145 (in Chinese). doi: 10.3969/j.issn.1001-3881.2022.04.027
    [21] BUTT K, COSTA G K, SEPEHRI N. Optimization-driven controller design for a high-performance electro-hydrostatic asymmetric actuator operating in all quadrants[J]. Journal of Dynamic Systems, Measurement, and Control, 2021, 143(9): 094503. doi: 10.1115/1.4050722
    [22] ZOU H J, WANG H B, WANG X, et al. Research on electro-hydrostatic actuator for large scale operation and maintenance equipment of railway line[C]//Proceedings of the ICRT. Reston: American Society of Civil Engineers, 2022: 503-514.
    [23] 王鑫, 王海波, 邹怀静. 非对称液压缸EHA专用流量匹配阀的设计与分析[J]. 机床与液压, 2022, 50(6): 65-70. doi: 10.3969/j.issn.1001-3881.2022.06.011

    WANG X, WANG H B, ZOU H J. Design and analysis of EHA special flow matching valve for asymmetric hydraulic cylinder[J]. Machine Tool & Hydraulics, 2022, 50(6): 65-70 (in Chinese). doi: 10.3969/j.issn.1001-3881.2022.06.011
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  81
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-01
  • 录用日期:  2022-10-30
  • 网络出版日期:  2022-11-15
  • 整期出版日期:  2024-08-28

目录

    /

    返回文章
    返回
    常见问答