留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空基回收拖曳系统直线-盘旋转接段运动轨迹设计

陈海通 苏子康 李春涛 李雪兵 孟冲 张朋

陈海通,苏子康,李春涛,等. 空基回收拖曳系统直线-盘旋转接段运动轨迹设计[J]. 北京航空航天大学学报,2024,50(8):2565-2574 doi: 10.13700/j.bh.1001-5965.2022.0692
引用本文: 陈海通,苏子康,李春涛,等. 空基回收拖曳系统直线-盘旋转接段运动轨迹设计[J]. 北京航空航天大学学报,2024,50(8):2565-2574 doi: 10.13700/j.bh.1001-5965.2022.0692
CHEN H T,SU Z K,LI C T,et al. Trajectory design for straight-circulating flight transition of aerial recovery towing system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2565-2574 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0692
Citation: CHEN H T,SU Z K,LI C T,et al. Trajectory design for straight-circulating flight transition of aerial recovery towing system[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2565-2574 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0692

空基回收拖曳系统直线-盘旋转接段运动轨迹设计

doi: 10.13700/j.bh.1001-5965.2022.0692
基金项目: 国家自然科学基金(61903190);航空科学基金(2022Z023052003);中国博士后科学基金(2020M681588); 西北工业大学无人机特种技术重点实验室开放课题(2022-JCJQ-LB-071);中央高校基本科研业务费专项资金(NS2023016)
详细信息
    通讯作者:

    E-mail:zk_su@nuaa.edu.cn

  • 中图分类号: V249

Trajectory design for straight-circulating flight transition of aerial recovery towing system

Funds: National Natural Science Foundation of China (61903190); Aeronautical Science Foundation of China (2022Z023052003); China Postdoctoral Science Foundation (2020M681588); Fund of The State Key Laboratory of UAV Special Technology in NWPU (2022-JCJQ-LB-071); The Funda mental Research Funds for the Central Universities (NS2023016)
More Information
  • 摘要:

    针对气流扰动下空基回收拖曳系统在直线-盘旋转接段飞行过程中的拖曳浮标稳定问题,提出一种基于微分平坦理论的拖曳系统转接段运动轨迹的设计方法,通过设计母机运动轨迹间接地控制拖曳浮标沿着预设的转接轨迹安全、平稳、精准地转接飞行。采用质点-弹簧离散缆绳模型构建母机-缆绳-浮标组合体多体动力学模型;在证明拖曳系统具备微分平坦特性的基础上,以拖曳浮标三轴位置为平坦输出,所提方法以期浮标沿着预设安全转接段轨迹飞行;结合拖曳浮标直线飞行状态与盘旋飞行状态设计拖曳浮标转接段飞行轨迹。通过平静大气、多种常值风及阵风气流扰动场景下的仿真算例结果表明,所提方法能够实现拖曳浮标在直线-盘旋转接段的稳定飞行。

     

  • 图 1  拖曳系统建模

    Figure 1.  Modeling of towing system

    图 2  基于微分平坦的轨迹规划算法流程

    Figure 2.  Flow chart of trajectory planning algorithm based on differential flatness

    图 3  浮标转接过渡飞行示意

    Figure 3.  Buoy flight in transition section

    图 4  平静大气下拖曳系统轨迹

    Figure 4.  Trajectory of towing system in calm atmosphere

    图 5  平静大气下拖曳系统速率

    Figure 5.  Speed of towing system in calm atmosphere

    图 6  平静大气下拖曳系统加速度

    Figure 6.  Acceleration of towing system in calm atmosphere

    图 7  3 m/s常值风下拖曳系统轨迹

    Figure 7.  Trajectory of towing system under constant wind of 3 m/s

    图 8  不同常值风扰动下母机轨迹俯视

    Figure 8.  Vertical view of mothership trajectory under different constant winds

    图 9  不同常值风扰动下母机高度

    Figure 9.  Altitude of mothership under different constant winds

    图 10  不同常值风扰动下母机速率

    Figure 10.  Speed of mothership under different constant winds

    图 11  不同常值风扰动下母机加速度

    Figure 11.  Acceleration of mothership under different constant winds

    图 12  阵风下拖曳系统轨迹

    Figure 12.  Trajectory of towing system under gust wind

    图 13  阵风下拖曳系统速率

    Figure 13.  Speed of towing system under gust wind

    图 14  阵风下拖曳系统加速度

    Figure 14.  Acceleration of towing system under gust wind

    表  1  拖曳系统飞行参数[21]

    Table  1.   Flight parameters of towing system[21]

    参数 数值
    浮标高度$H$/m 1000
    直线速度$V_0^{}$/(m·s−1) 80
    盘旋速度$V_{\mathrm{f}}^{}$/(m·s−1) 20
    初始半径${R_0}$/m 1200
    终点半径${R_{\mathrm{f}}}$/m 300
    转接过渡开始时刻${t_0}$/s 10
    转接过渡飞行时间$T$/s 200
    仿真时间${t_{\mathrm{e}}}$/s 304
    初始偏航角${\theta _0}$/(°) 270
    下载: 导出CSV

    表  2  缆绳-浮标参数

    Table  2.   Parameters of cable-buoy

    参数 数值
    缆绳长度${l_0}$/m 400
    缆绳密度${\rho _l}$/(kg·m−3) 970
    缆绳直径${d_l}$/m 2×10−3
    缆绳弹性模量${E}$/Pa 1.2×1011
    浮标质量${m_{{\text{dr}}}}$/kg 30
    浮标气动面积$ {S_{{{\mathrm{dr}}}}} $/m2 0.785
    浮标阻力系数$ C_{{{\mathrm{dr}}}}^{{\mathrm{D}}} $ 0.42
    浮标升力系数$ C_{{{\mathrm{dr}}}}^{{\mathrm{L}}} $ 0.01
    下载: 导出CSV
  • [1] 刘永孛. 集群无人机空基回收任务规划方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021: 3-11.

    LIU Y B. Research on mission planning methods for aerial recovery of unmanned aerial vehicle swarms[D]. Harbin: Harbin Institute of Technology, 2021: 3-11(in Chinese).
    [2] 曹莉, 耿斌斌, 周亮, 等. 无人机集群发射与回收技术发展研究[J]. 空天防御, 2019, 2(2): 68-72.

    CAO L, GENG B B, ZHOU L, et al. Research on UAVS launch and recovery technology development[J]. Air & Space Defense, 2019, 2(2): 68-72(in Chinese).
    [3] SUN L, CASTAGNO J D, HEDENGREN J D, et al. Parameter estimation for towed cable systems using moving horizon estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(2): 1432-1446. doi: 10.1109/TAES.2014.130642
    [4] WILLIAMS P, TRIVAILO P. Dynamics of circularly towed aerial cable systems, Part 2: Transitional flight and deployment control[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 766-779. doi: 10.2514/1.20434
    [5] 苏子康, 李春涛, 余跃, 等. 绳系拖曳飞行器高抗扰轨迹跟踪控制[J]. 北京航空航天大学学报, 2021, 47(11): 2234-2248.

    SU Z K, LI C T, YU Y, et al. High anti-disturbance trajectory tracking control for cable towed vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2234-2248(in Chinese).
    [6] MERZ M, JOHANSEN T A. Control of an end body towed by a circling unmanned aerial vehicle[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(12): 2677-2686. doi: 10.2514/1.G004199
    [7] RO K, KUK T, KAMMAN J W. Dynamics and control of hose-drogue refueling systems during coupling[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(6): 1694-1708. doi: 10.2514/1.53205
    [8] 方晓星, 王勇, 王英勋. 低空掠海飞行拖靶自抗扰高度控制律设计[J]. 南京理工大学学报, 2012, 36(5): 835-839.

    FANG X X, WANG Y, WANG Y X. Design of active disturbances rejection control law of low altitude sea-skimming tow target[J]. Journal of Nanjing University of Science and Technology, 2012, 36(5): 835-839(in Chinese).
    [9] SU Z K, LI C T, WU J F, et al. Neuro-adaptive prescribed performance control for aerial-recovery drogue with actuator constraints[J]. Journal of Guidance, Control, and Dynamics, 2022, 45(8): 1451-1465. doi: 10.2514/1.G005679
    [10] WILLIAMS P. Optimization of circularly towed cable system in crosswind[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4): 1251-1263. doi: 10.2514/1.45241
    [11] SUN L, HEDENGREN J D, BEARD R W. Optimal trajectory generation using model predictive control for aerially towed cable systems[J]. Journal of Guidance, Control, Dynamics, 2014, 37(2): 525-539. doi: 10.2514/1.60820
    [12] MURRAY R M. Trajectory generation for a towed cable system using differential flatness[J]. IFAC Proceedings Volumes, 1996, 29(1): 2792-2797. doi: 10.1016/S1474-6670(17)58099-4
    [13] WILLIAMS P, LAPTHORNE P, TRIVAILO P. Circularly-towed lumped mass cable model validation from experimental data[C]// Proceedings of the AIAA Modeling and Simulation Technologies Conference and Exhibit. Reston: AIAA, 2006.
    [14] WILLIAMS P, SGARIOTO D, TRIVAILO P. Motion planning for an aerial-towed cable system[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2005.
    [15] WILLIAMS P, TRIVAILO P. Dynamics of circularly towed aerial cable systems, Part I: Optimal configurations and their stability[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 753-765. doi: 10.2514/1.20433
    [16] 周孝添, 任宏斌, 苏波, 等. 基于微分平坦的分层轨迹规划算法[J]. 兵工学报, 2023, 44(2): 394-405.

    ZHOU X T, REN H B, SU B, et al. Hierarchical trajectory planning algorithm based on differential flatness[J]. Acta Armanmentarii, 2023, 44(2): 394-405(in Chinese).
    [17] 丛岩峰, 安向京, 陈虹, 等. 基于滚动优化原理的类车机器人路径跟踪控制[J]. 吉林大学学报(工学版), 2012, 42(1): 182-187.

    CONG Y F, AN X J, CHEN H, et al. Path following control of car-like robot based on rolling windows[J]. Journal of Jilin University(Engineering and Technology Edition), 2012, 42(1): 182-187(in Chinese).
    [18] CHAMSEDDINE A, ZHANG Y M, RABBATH C A, et al. Flatness-based trajectory planning/replanning for a quadrotor unmanned aerial vehicle[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 2832-2848. doi: 10.1109/TAES.2012.6324664
    [19] ZHAO D, MISHRA S, GANDHI F. A differential-flatness-based approach for autonomous helicopter shipboard landing[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(3): 1557-1569. doi: 10.1109/TMECH.2021.3085696
    [20] WILLIAMS P, SGARIOTO D, TRIVAILO P M. Constrained path-planning for an aerial-towed cable system[J]. Aerospace Science and Technology, 2008, 12(5): 347-354. doi: 10.1016/j.ast.2007.08.006
    [21] 朱延娟, 罗丹. 飞机圆周盘旋时托缆的动力学建模与分析[J]. 同济大学学报(自然科学版), 2018, 46(1): 81-86.

    ZHU Y J, LUO D. Dynamics modeling and simulation of circularly aerial towed cable systems[J]. Journal of Tongji University (Natural Science), 2018, 46(1): 81-86(in Chinese).
    [22] 肖业伦, 金长江. 大气扰动中的飞行原理[M]. 北京: 国防工业出版社, 1993: 27-48.

    XIAO Y L, JIN C J. Flight principle in atmospheric disturbance [M]. Beijing: National Defense Industry Press, 1993: 27-48(in Chinese).
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  77
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-07
  • 录用日期:  2022-09-11
  • 网络出版日期:  2022-11-08
  • 整期出版日期:  2024-08-28

目录

    /

    返回文章
    返回
    常见问答