留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应UKF的卫星星座自主导航方法

王栋 杨静 熊凯

王栋,杨静,熊凯. 基于自适应UKF的卫星星座自主导航方法[J]. 北京航空航天大学学报,2024,50(8):2655-2666 doi: 10.13700/j.bh.1001-5965.2022.0696
引用本文: 王栋,杨静,熊凯. 基于自适应UKF的卫星星座自主导航方法[J]. 北京航空航天大学学报,2024,50(8):2655-2666 doi: 10.13700/j.bh.1001-5965.2022.0696
WANG D,YANG J,XIONG K. Autonomous navigation method of satellite constellation based on adaptive UKF[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2655-2666 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0696
Citation: WANG D,YANG J,XIONG K. Autonomous navigation method of satellite constellation based on adaptive UKF[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2655-2666 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0696

基于自适应UKF的卫星星座自主导航方法

doi: 10.13700/j.bh.1001-5965.2022.0696
基金项目: 民用航天技术预先研究项目(D020403)
详细信息
    通讯作者:

    E-mail:jing.yang@buaa.edu.cn

  • 中图分类号: V324

Autonomous navigation method of satellite constellation based on adaptive UKF

Funds: Civil Aerospace Advance Research Project(D020403)
More Information
  • 摘要:

    针对卫星星座自主导航系统中存在的模型不确定性及难以准确获取的时变系统噪声统计特性影响导航精度的问题,提出了一种系统噪声在线自适应调整的UKF算法。基于所提出的自适应UKF算法设计了一种基于星间相对测量的卫星星座自主导航方法,该方法结合奇异值分解和比例修正的采样策略,解决了应用UKF时易出现状态误差方差阵丧失正定性而导致的Cholesky分解无法进行的问题。通过在低轨区域星座和中轨全球星座上的仿真实验,验证了该算法在提高滤波精度以及改善状态估计置信度方面的有效性,所提算法的定轨精度优于EKF算法、自适应EKF算法以及基于对称采样策略的UKF算法。采用CRLB分析法对导航算法的估计性能进行了分析验证。

     

  • 图 1  局域星座构型示意图

    Figure 1.  Local constellation configuration

    图 2  全球星座构型示意图

    Figure 2.  Global constellation configuration

    图 3  位置均方根误差随遗忘因子变化的曲线

    Figure 3.  Variation of RMSE of position with forgetting factor

    图 4  新息统计值随遗忘因子的变化趋势

    Figure 4.  Variation of innovation statistics with forgetting factor

    图 5  新息统计值随遗忘因子变化的趋势

    Figure 5.  Variation of innovation statistics with forgetting factor

    图 6  基于UKF算法的卫星1的位置误差

    Figure 6.  Position error of satellite 1 based on UKF algorithm

    图 7  基于UKF算法的卫星1的速度误差

    Figure 7.  Velocity error of satellite 1 based on UKF algorithm

    图 8  基于AUKF算法的卫星1位置误差

    Figure 8.  Position error of satellite 1 based on AUKF algorithm

    图 9  基于AUKF算法的卫星1速度误差

    Figure 9.  Velocity error of satellite 1 based on AUKF algorithm

    图 10  AUKF算法切换前后卫星1位置误差

    Figure 10.  Position error of satellite 1 before and after AUKF algorithm switching

    图 11  AUKF算法切换前后卫星1速度误差

    Figure 11.  Velocity error of satellite 1 before and after AUKF algorithm switching

    图 12  AUKF算法切换后卫星1位置误差

    Figure 12.  Position error of satellite 1 after AUKF algorithm switching

    图 13  AUKF算法切换后卫星1速度误差

    Figure 13.  Velocity error of satellite 1 after AUKF algorithm switching

    图 14  不同滤波算法下位置误差对比

    Figure 14.  Comparison of position error under different filtering algorithms

    图 15  不同滤波算法下速度误差对比

    Figure 15.  Comparison of velocity errors under different filtering algorithms

    图 16  基于AUKF的位置误差和CRLB曲线

    Figure 16.  Position error and CRLB curve based on AUKF

    图 17  基于AUKF的速度误差和CRLB曲线

    Figure 17.  Velocity error and CRLB curve based on AUKF

    表  1  星座卫星初始轨道参数

    Table  1.   Initial orbit parameters of constellation satellites

    卫星
    编号
    轨道
    半长轴/km
    偏心率 轨道
    倾角/(°)
    近地点
    幅角/(°)
    升交点
    赤经
    真近点
    角/(°)
    1 7478.14 0.00 63.14 0.00 0.85 0.50
    2 7478.14 0.00 62.00 0.00 0.00 3.00
    3 7478.14 0.00 62.00 0.00 0.00 359.20
    4 7478.14 0.00 63.14 0.00 0.00 1.80
    下载: 导出CSV

    表  2  不同星座构型下的导航误差统计

    Table  2.   Statistics of navigation errors under different constellation configurations

    星座构型 滤波方法 位置误差/m 速度误差/(m·s−1)
    低轨局域星座UKF272.740.332 3
    AUKF207.030.216 7
    EKF280.240.344 2
    AEKF215.210.227 6
    中轨全球星座UKF50.010.012 0
    AUKF20.060.002 6
    EKF54.630.014 0
    AEKF29.580.005 3
    下载: 导出CSV

    表  3  不同算法的仿真耗时统计

    Table  3.   Simulation time statistics of different algorithms

    滤波算法 仿真时长/s
    EKF 89.72
    UKF 1 407.31
    AEKF 94.21
    AUKF 1 408.59
    下载: 导出CSV

    A1  不同滤波算法的导航误差统计

    A1.   Navigation error statistics under different filtering algorithms

    卫星编号 滤波算法 $\delta {r_x}$/m $\delta {r_y}$/m $\delta {r_{\textit{z}}}$/m $\delta r$/m $\delta {v_x}$/(m·s−1) $\delta {v_y}$/(m·s−1) $\delta {v_{\textit{z}}}$/(m·s−1) $\delta v$/(m·s−1)
    1 EKF 109.82 231.22 115.93 281.01 0.130 6 0.294 9 0.115 9 0.342 7
    UKF 95.77 229.98 110.67 272.03 0.106 5 0.295 6 0.103 2 0.330 7
    AEKF 80.54 166.61 109.83 215.19 0.085 3 0.183 9 0.100 4 0.226 4
    AUKF 77.51 161.87 103.46 207.16 0.084 1 0.176 5 0.094 2 0.217 1
    2 EKF 110.04 231.34 116.17 273.11 0.129 4 0.296 3 0.115 7 0.343 4
    UKF 96.03 230.15 110.52 272.77 0.105 1 0.297 1 0.102 9 0.331 5
    AEKF 80.50 166.79 109.42 215.11 0.084 0 0.184 6 0.100 4 0.226 3
    AUKF 77.46 161.87 103.46 207.08 0.083 0 0.177 7 0.093 1 0.217 1
    3 EKF 109.65 231.34 116.17 281.14 0.131 4 0.296 2 0.115 7 0.344 1
    UKF 95.58 230.11 110.91 272.74 0.107 5 0.296 9 0.103 1 0.332 2
    AEKF 80.51 166.60 110.09 215.31 0.086 1 0.184 7 0.101 4 0.227 6
    AUKF 77.49 161.86 103.72 207.27 0.084 8 0.178 0 0.094 6 0.218 7
    4 EKF 109.90 231.23 115.79 280.99 0.130 1 0.298 4 0.115 8 0.342 4
    UKF 95.85 229.98 110.53 272.61 0.106 5 0.295 6 0.130 7 0.330 4
    AEKF 80.52 166.59 109.60 215.06 0.084 8 0.183 8 0.099 9 0.225 7
    AUKF 77.49 161.85 103.72 207.03 0.083 7 0.176 6 0.093 6 0.216 7
    下载: 导出CSV

    表  4  CRLB方差下界统计

    Table  4.   CRLB statistics of variance

    噪声
    情况
    均值 $\delta {r_x}$/m $\delta {r_y}$/m $\delta {r_{\textit{z}}}$/m $\delta {v_x}$/(m·s−1) $\delta {v_y}$/(m·s−1) $\delta {v_{\textit{z}}}$/(m·s−1)
    非理想 1$\sigma $ 96.22 456.01 89.08 0.132 2 1.100 8 0.120 8
    3$\sigma $ 283.83 1 364.04 261.17 0.390 3 3.304 1 0.352 6
    理想 1$\sigma $ 47.57 59.04 60.97 0.052 7 0.055 9 0.056 6
    3$\sigma $ 142.70 177.11 182.90 0.158 2 0.167 7 0.169 8
    下载: 导出CSV
  • [1] PSIAKI M L. Absolute orbit and gravity determination using relative position measurements between two satellites[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(5): 1285-1297. doi: 10.2514/1.47560
    [2] KIHARA M, OKADA T. A satellite selection method and accuracy for the global positioning system[J]. Navigation, 1984, 31(1): 8-20. doi: 10.1002/j.2161-4296.1984.tb00856.x
    [3] GARCÍA-FERNÁNDEZ Á F, SVENSSON L. Gaussian MAP filtering using Kalman optimization[J]. IEEE Transactions on Automatic Control, 2015, 60(5): 1336-1349. doi: 10.1109/TAC.2014.2372909
    [4] CHEN L, JIANG B W, LIU Y Q, et al. Application of adaptive EKF in real-time orbit determination[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(4): 187. doi: 10.1007/s40430-021-02867-z
    [5] XU Y, SHEN T, CHEN X Y, et al. Predictive adaptive Kalman filter and its application to INS/UWB-integrated human localization with missing UWB-based measurements[J]. International Journal of Automation and Computing, 2019, 16(5): 604-613. doi: 10.1007/s11633-018-1157-4
    [6] CAO L, YANG W W, LI H N, et al. Robust double gain unscented Kalman filter for small satellite attitude estimation[J]. Advances in Space Research, 2017, 60(3): 499-512. doi: 10.1016/j.asr.2017.03.014
    [7] LIU X H, GUAN J W, GAO X, et al. Adaptive robust unscented Kalman filter for power system dynamic state estimation[C]// 2021 40th Chinese Control Conference (CCC). Piscataway: IEEE Press, 2021: 6793-6798.
    [8] SHAN C H, ZHOU W D, YANG Y F, et al. Multi-fading factor and updated monitoring strategy adaptive Kalman filter-based variational Bayesian[J]. Sensors, 2020, 21(1): 198. doi: 10.3390/s21010198
    [9] MEHRJOUYAN A, ALFI A. Robust adaptive unscented Kalman filter for bearings-only tracking in three dimensional case[J]. Applied Ocean Research, 2019, 87: 223-232. doi: 10.1016/j.apor.2019.01.034
    [10] QI W J, SHENG Z B, WANG S G. Robust centralized fusion Kalman filters with uncertain noise variances[C]// 2019 Chinese Control and Decision Conference (CCDC). Piscataway: IEEE Press, 2019: 4028-4033.
    [11] ABDUL SALAM A O, SHERIFF R E, HU Y F, et al. Automatic modulation classification using interacting multiple model Kalman filter for channel estimation[J]. IEEE Transactions on Vehicular Technology, 2019, 68(9): 8928-8939.
    [12] MALEKZADEH P, SALIMIBENI M, MOHAMMADI A, et al. MM-KTD: multiple model Kalman temporal differences for reinforcement learning[J]. IEEE Access, 2020, 8: 128716-128729. doi: 10.1109/ACCESS.2020.3007951
    [13] XIONG K, WEI C L, ZHANG H Y. Parallel model adaptive Kalman filtering for autonomous navigation with line-of-sight measurements[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(11): 4017-4031. doi: 10.1177/0954410018813053
    [14] KIUMARSI B, VAMVOUDAKIS K G, MODARES H, et al. Optimal and autonomous control using reinforcement learning: a survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(6): 2042-2062. doi: 10.1109/TNNLS.2017.2773458
    [15] XIONG K, WEI C L, ZHANG H Y. Q-learning for noise covariance adaptation in extended Kalman filter[J]. Asian Journal of Control, 2021, 23(4): 1803-1816. doi: 10.1002/asjc.2336
    [16] PENG S M, CHEN C, SHI H B, et al. State of charge estimation of battery energy storage systems based on adaptive unscented Kalman filter with a noise statistics estimator[J]. IEEE Access, 2017, 5: 13202-13212. doi: 10.1109/ACCESS.2017.2725301
    [17] HAJIYEV C, SOKEN H E, GULER D C. Q-adaptation of SVD-aided UKF algorithm for nanosatellite attitude estimation[J]. IFAC-PapersOnLine, 2017, 50(1): 8273-8278. doi: 10.1016/j.ifacol.2017.08.1399
    [18] SOKEN H E, HACIZADE C, SAKAI S I. Simultaneous adaptation of the process and measurement noise covariances for the UKF applied to nanosatellite attitude estimation[J]. IFAC Proceedings Volumes, 2014, 47(3): 5921-5926. doi: 10.3182/20140824-6-ZA-1003.00773
    [19] HAVANGI R. Adaptive robust unscented Kalman filter with recursive least square for state of charge estimation of batteries[J]. Electrical Engineering, 2022, 104(2): 1001-1017. doi: 10.1007/s00202-021-01358-7
    [20] 李瑞鹏. 基于测向测距的星座自主导航方法仿真研究[D]. 北京: 北京航空航天大学, 2018: 23-24.

    LI R P. Simulation Research on autonomous navigation method of constellation based on directions and ranging[D]. Beijing: Beihang University, 2018: 23-24(in Chinese).
    [21] 何丽娜. 不同摄动力对低中高轨航天器轨道的影响分析[J]. 大地测量与地球动力学, 2017, 37(11): 1156-1160,1165.

    HE L N. Perturbation forces analysis for spacecraft of different orbit altitudes[J]. Journal of Geodesy and Geodynamics, 2017, 37(11): 1156-1160,1165 (in Chinese).
    [22] LIU F, LIU Y B, SUN X J, et al. A new multi-sensor hierarchical data fusion algorithm based on unscented Kalman filter for the attitude observation of the wave glider[J]. Applied Ocean Research, 2021, 109: 102562. doi: 10.1016/j.apor.2021.102562
  • 加载中
图(17) / 表(5)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  122
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-09
  • 录用日期:  2022-11-19
  • 网络出版日期:  2022-12-24
  • 整期出版日期:  2024-08-28

目录

    /

    返回文章
    返回
    常见问答