留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于LES的射流火焰湍流辐射交互作用研究

宋绪光 金捷 张敏琦 王方

宋绪光,金捷,张敏琦,等. 基于LES的射流火焰湍流辐射交互作用研究[J]. 北京航空航天大学学报,2024,50(8):2667-2676 doi: 10.13700/j.bh.1001-5965.2022.0697
引用本文: 宋绪光,金捷,张敏琦,等. 基于LES的射流火焰湍流辐射交互作用研究[J]. 北京航空航天大学学报,2024,50(8):2667-2676 doi: 10.13700/j.bh.1001-5965.2022.0697
SONG X G,JIN J,ZHANG M Q,et al. Turbulence-radiation interaction in turbulent jet flame based on large-eddy simulation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2667-2676 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0697
Citation: SONG X G,JIN J,ZHANG M Q,et al. Turbulence-radiation interaction in turbulent jet flame based on large-eddy simulation[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2667-2676 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0697

基于LES的射流火焰湍流辐射交互作用研究

doi: 10.13700/j.bh.1001-5965.2022.0697
基金项目: 国家科技重大专项(2017-Ⅰ-0004-0005);国家自然科学基金(91741125)
详细信息
    通讯作者:

    E-mail:fwang@buaa.edu.cn

  • 中图分类号: V231.2

Turbulence-radiation interaction in turbulent jet flame based on large-eddy simulation

Funds: National Science and Technology Major Project (2017-I-0004-0005); National Natural Science Foundation of China (91741125)
More Information
  • 摘要:

    在大涡模拟中,研究了亚格子湍流辐射交互作用(SGS-TRI)对Sandia Flame D和Flame 4D(Scaled Sandia flame D)辐射源项的影响。模拟中,采用概率密度函数输运方程(TPDF)湍流燃烧模型模拟湍流燃烧过程,球谐函数(P1近似)法、灰气体加权和模型(WSGGM)模拟辐射换热。采用湍流涡团光学薄脉动近似(OTFA)处理滤波吸收项,分别采用考虑和忽略SGS-TRI的方法求解滤波发射项。结果显示,SGS-TRI仅在辐射源项本身数值较小的区域对时均辐射源项有相对较大的影响(最大为25%);考虑和忽略SGS-TRI计算得到的时均温度以及CO2浓度等径向分布基本重合(相对差别小于3%)。因此,亚格子湍流辐射交互作用对无碳烟湍流射流火焰(Flame D和Flame 4D)的影响较小。

     

  • 图 1  矩形炉膛温度分布

    Figure 1.  Rectangular furnace temperature distribution

    图 2  不同高度温度对比

    Figure 2.  Comparison of temperature at different heights

    图 3  Flame D几何结构示意图

    Figure 3.  Geometric structure of Flame D

    图 4  网格划分示意图

    Figure 4.  Grid division

    图 5  非耦合情况下Flame4D平均辐射源项对比

    Figure 5.  Comparison of average radiation source term of Flame 4D in non-coupled case

    图 6  非耦合情况下Flame 4D平均吸收项和发射项对比

    Figure 6.  Comparison of average absorption and emission terms of Flame 4D in non-coupled case

    图 7  非耦合情况下$ R({S_{\rm{r}}}) $分布

    Figure 7.  $ R({S_{\rm{r}}}) $ distribution in non-coupled case

    图 8  耦合情况下Flame 4D时均辐射源项径向分布图与${\mathrm{Diff}}{({S_{\rm{r}}})_{1,3}}$径向分布

    Figure 8.  Radial distribution of time-averaged radiation source term of Flame 4D and Radial distribution of ${\mathrm{Diff}}{({S_{\rm{r}}})_{1,3}}$for coupled case

    图 9  Flame D时均温度对比图与Flame D时均温度相对差值对比

    Figure 9.  Time-averaged temperature comparison of Flame D and relative difference of time-averaged temperature of Flame D

    图 10  Flame 4D时均温度对比图与Flame 4D时均温度相对差值对比

    Figure 10.  Time-averaged temperature comparison of Flame 4D and relative difference of time-averaged temperature of Flame 4D

    图 11  Flame4D时均二氧化碳质量分数对比图与时均二氧化碳质量分数相对误差对比图

    Figure 11.  Time-averaged CO2 concentration comparison of Flame 4D and relative difference of time-averaged CO2 concentration

    表  1  Flame D和Flame 4D边界条件

    Table  1.   Boundary conditions of Flame D and Flame 4D

    边界 Flame D Flame 4D
    FUEL 温度T=293 K,
    速度U=49.6 m/s
    体积分数甲烷0.25,
    空气0.75
    温度T=293 K,
    速度U=12.4 m/s
    体积分数甲烷0.25,
    空气0.75
    PILOT 温度T=1880 K,
    速度U=11.4 m/s
    已燃气
    温度T=1880 K,
    速度U=2.85 m/s
    已燃气
    CO-FLOW 温度T=293 K,
    速度U=0.9 m/s
    空气
    温度T=293 K,
    速度U=0.225 m/s
    空气
    出口边界 压力出口边界 压力出口边界
    其他边界 T=300 K,ε=1.0 T=300 K,ε=1.0
    下载: 导出CSV

    表  2  滤波发射项的不同近似方法

    Table  2.   Different approximation methods used to calculate filtering emission term

    参考名称 发射项
    method 1 ${\tilde \kappa _j}{\alpha _j}(\tilde T){I_{\mathrm{b}}}(\tilde T)$
    method 2 ${\tilde \kappa _j}{\alpha _j}(\tilde T)\widetilde {{I_{\mathrm{b}}}}$
    method 3 $\widetilde {{\kappa _j}{\alpha _j}{I_{\mathrm{b}}}}$
    下载: 导出CSV

    表  3  非耦合情况下辐射计算结果总结

    Table  3.   Summary of radiation calculation results for non-coupled case

    火焰 $ \left\langle{{\tilde{Q}}_{\mathrm{e}\mathrm{m}}}\right\rangle $/kW $ \left\langle{{\tilde{Q}}_{\mathrm{a}\mathrm{b}\mathrm{s}}}\right\rangle $/kW $ \left\langle{{\tilde{Q}}_{\mathrm{n}\mathrm{e}\mathrm{t}}}\right\rangle $/kW $ {f}_{\mathrm{r}\mathrm{a}\mathrm{d}} $/%
    D(method1) 1.094 1 0.164 8 0.929 4 6.12
    D(method2) 1.096 3 0.165 0 0.931 4 6.14
    D(method3) 1.116 9 0.165 8 0.951 1 6.23
    4D(method1) 39.473 3 12.308 3 27.165 1 58.73
    4D(method2) 39.533 6 12.323 7 27.209 9 58.82
    4D(method3) 39.891 6 12.388 5 27.503 1 59.46
    下载: 导出CSV

    表  4  耦合情况下辐射计算结果总结

    Table  4.   Summary of radiation calculation results for coupled case

    火焰 $ \left\langle{{\tilde{Q}}_{\mathrm{e}\mathrm{m}}}\right\rangle $/kW $ \left\langle{{\tilde{Q}}_{\mathrm{a}\mathrm{b}\mathrm{s}}}\right\rangle $/kW $ \left\langle{{\tilde{Q}}_{\mathrm{n}\mathrm{e}\mathrm{t}}}\right\rangle $/kW $ {f}_{\mathrm{r}\mathrm{a}\mathrm{d}} $/%
    D(method1) 1.1059 0.1691 0.9369 6.01
    D(method3) 1.1036 0.1681 0.9355 6.09
    4D(method1) 39.1258 14.5712 24.5546 46.40
    4D(method3) 39.6041 14.6760 24.9281 46.73
    下载: 导出CSV
  • [1] LEFEBVRE A H. Gas turbine combustion[M]. 2nd ed. Philadelphia: Taylor & Francis, 1999.
    [2] LI G N, MODEST M F. Importance of turbulence-radiation interactions in turbulent diffusion jet flames[J]. Journal of Heat Transfer, 2003, 125(5): 831-838. doi: 10.1115/1.1597621
    [3] WANG A Q, MODEST M F, HAWORTH D C, et al. Monte Carlo simulation of radiative heat transfer and turbulence interactions in methane/air jet flames[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2008, 109(2): 269-279. doi: 10.1016/j.jqsrt.2007.08.030
    [4] 刘玉英, 吴辉霞, 薛然然, 等. TRI对湍流火焰模拟中辐射源项的影响[J]. 燃烧科学与技术, 2011, 17(2): 121-125.

    LIU Y Y, WU H X, XUE R R, et al. Influence of TRI on radiation source term during turbulent flame simulation[J]. Journal of Combustion Science and Technology, 2011, 17(2): 121-125 (in Chinese).
    [5] FRAGA G C, MIRANDA F C, FRANCA F H R, et al. Assessment of a model for emission subgrid-scale turbulence-radiation interaction applied to a scaled Sandia flame DD[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 248: 106986. doi: 10.1016/j.jqsrt.2020.106986
    [6] MIRANDA F C, COELHO P J, STRÖHLE J, et al. Large-eddy simulation of a bluff-body stabilised nonpremixed flame with radiation heat transfer[J]. Combustion Theory and Modelling, 2020, 24(4): 632-649.
    [7] COELHO P J. Approximate solutions of the filtered radiative transfer equation in large eddy simulations of turbulent reactive flows[J]. Combustion and Flame, 2009, 156: 1099-1110. doi: 10.1016/j.combustflame.2008.10.006
    [8] CONSALVI J L, NMIRA F, KONG W J. On the modeling of the filtered radiative transfer equation in large eddy simulations of lab-scale sooting turbulent diffusion flames[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 221: 51-60. doi: 10.1016/j.jqsrt.2018.09.020
    [9] GUPTA A, HAWORTH D C, MODEST M F. Turbulence-radiation interactions in large-eddy simulations of luminous and nonluminous nonpremixed flames[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1281-1288. doi: 10.1016/j.proci.2012.05.052
    [10] MIRANDA F C, COELHO P J, DI MARE F, et al. Study of turbulence-radiation interactions in large-eddy simulation of scaled Sandia flame D[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 228: 47-56. doi: 10.1016/j.jqsrt.2019.02.010
    [11] JONES W P, PRASAD V N. Large Eddy Simulation of the Sandia Flame Series (D–F) using the Eulerian stochastic field method[J]. Combustion and Flame, 2010, 157(9): 1621-1636. doi: 10.1016/j.combustflame.2010.05.010
    [12] YIN C G. Refined weighted sum of gray gases model for air-fuel combustion and its impacts[J]. Energy & Fuels, 2013, 27(10): 6287-6294.
    [13] MENGÜÇ M P, VISKANTA R. Radiative transfer in three-dimensional rectangular enclosures containing inhomogeneous, anisotropically scattering media[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1985, 33(6): 533-549. doi: 10.1016/0022-4073(85)90021-4
    [14] 郝金波. 非均匀各向异性散射介质内辐射传递求解的有限体积法[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    HAO J B. Finite volume method for solving radiative transfer in inhomogeneous anisotropic scattering media[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese).
    [15] MASRI A R, DIBBLE R W, BARLOW R S. Turbulent nonpremixed flames stabilished on a piloted jet burner[C]//Proceedings of the International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames. California: Sandia National Laboratories, 1996: 41-46.
    [16] ZHOU L X, QIAO L, ZHANG J. A unified second-order moment turbulence-chemistry model for simulating turbulent combustion and NOx formation[J]. Fuel, 2002, 81: 1703-1709. doi: 10.1016/S0016-2361(01)00173-9
    [17] 徐晓. 湍流非预混火焰中热辐射影响的数值研究[D]. 合肥: 中国科学技术大学, 2006.

    XU X. Numerical investigation of thermal radiation effects of non-premixed flames[D]. Hefei: University of Science and Technology of China, 2006 (in Chinese).
    [18] DORIGON L J, DUCIAK G, BRITTES R, et al. WSGG correlations based on HITEMP2010 for computation of thermal radiation in non-isothermal, non-homogeneous H2O/CO2 mixtures[J]. International Journal of Heat and Mass Transfer, 2013, 64: 863-873. doi: 10.1016/j.ijheatmasstransfer.2013.05.010
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  249
  • HTML全文浏览量:  98
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-09
  • 录用日期:  2023-01-13
  • 网络出版日期:  2023-01-18
  • 整期出版日期:  2024-08-28

目录

    /

    返回文章
    返回
    常见问答