留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进平衡优化算法的折叠翼飞行器自抗扰控制器设计

孟志鹏 杨柳庆 王波 刘燕斌

孟志鹏,杨柳庆,王波,等. 基于改进平衡优化算法的折叠翼飞行器自抗扰控制器设计[J]. 北京航空航天大学学报,2024,50(8):2449-2460 doi: 10.13700/j.bh.1001-5965.2022.0698
引用本文: 孟志鹏,杨柳庆,王波,等. 基于改进平衡优化算法的折叠翼飞行器自抗扰控制器设计[J]. 北京航空航天大学学报,2024,50(8):2449-2460 doi: 10.13700/j.bh.1001-5965.2022.0698
MENG Z P,YANG L Q,WANG B,et al. ADRC design for folding wing vehicles based on improved equilibrium optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2449-2460 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0698
Citation: MENG Z P,YANG L Q,WANG B,et al. ADRC design for folding wing vehicles based on improved equilibrium optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2449-2460 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0698

基于改进平衡优化算法的折叠翼飞行器自抗扰控制器设计

doi: 10.13700/j.bh.1001-5965.2022.0698
详细信息
    通讯作者:

    E-mail:yangliuqing@nuaa.edu.cn

  • 中图分类号: V249.1

ADRC design for folding wing vehicles based on improved equilibrium optimization algorithm

More Information
  • 摘要:

    针对折叠翼飞行器(FWV)模型误差和抗扰动能力较差及自抗扰控制器(ADRC)人工参数整定难的问题,提出一种基于莱维飞行的改进平衡优化(LEO)算法。给出典型FWV动力学模型,基于ADRC结构设计一种FWV的姿态控制器;在此基础上用所提算法整定了ADRC参数,并从控制性能和抗干扰的角度对经参数优化后的ADRC和传统ADRC进行仿真对比;将所提算法与经典平衡优化算法、粒子群优化(PSO)算法等进行仿真对比。仿真结果表明:所提算法优化的控制器能提高FWV的控制精度和扰动抑制性能,验证了所提算法在解决ADRC参数优化问题时的优越性。对搭载优化后ADRC的样机进行实飞验证,结果表明:在风扰之下,FWV样机仍具有较好的飞行性能指标,进一步验证了所提算法优化的ADRC对FWV抗扰能力的提升。

     

  • 图 1  FWV总体布局

    Figure 1.  Overall layout of FWV

    图 2  FWV操纵面

    Figure 2.  Control surface of FWV

    图 3  总体布置

    Figure 3.  General layout

    图 4  飞行器姿态控制器结构框图

    Figure 4.  Structure block diagram of attitude controller

    图 5  莱维飞行轨迹仿真

    Figure 5.  Simulation of Levy flight trajectory

    图 6  LEO算法流程图

    Figure 6.  Flow chart of LEO algorithm

    图 7  基于LEO算法的控制参数优化原理

    Figure 7.  Principle of control parameter optimization based on LEO algorithm

    图 8  攻角输出响应

    Figure 8.  Output response of angle of attack

    图 9  渐变风干扰下攻角跟踪曲线

    Figure 9.  Tracking curve of angle of attack under gradient disturbance

    图 10  适应度收敛曲线

    Figure 10.  Convergence curves of fitness

    图 11  攻角输出响应曲线

    Figure 11.  Output response curves of angle of attack

    图 12  适应度值分布箱线

    Figure 12.  Boxplot of fitness value distribution

    图 13  ${\beta _{01}}$箱线

    Figure 13.  Boxplot of ${\beta _{01}}$

    图 14  ${\beta _{02}}$箱线

    Figure 14.  Boxplot of ${\beta _{02}}$

    图 15  ${\beta _{03}}$箱线

    Figure 15.  Boxplot of ${\beta _{03}}$

    图 16  ${\beta _1}$箱线

    Figure 16.  Boxplot of ${\beta _1}$

    图 17  ${\beta _2}$箱线

    Figure 17.  Boxplot of ${\beta _2}$

    图 18  LEO-ESO观测下攻角通道扰动

    Figure 18.  Disturbance of angle of attack channel under LEO-ESO

    图 19  样机出筒

    Figure 19.  Prototype launched from cylinder

    图 20  样机实飞

    Figure 20.  Real flight drawing of prototype

    图 21  PID样机攻角响应

    Figure 21.  Angle of attack response of PID prototype

    图 22  LEO-ADRC样机攻角响应

    Figure 22.  Angle of attack response of LEO-ADRC prototype

    表  1  控制参数优化前后

    Table  1.   Control parameters before and after optimization

    控制器 ${\beta _{01}}$ ${\beta _{02}}$ ${\beta _{03}}$ ${\beta _1}$ ${\beta _2}$
    ADRC 100.00 60 000.00 1 000 000.00 2 500.00 134.00
    LEO算法优化后
    ADRC
    300.00 50 415.00 897 390.00 10 000 134
    下载: 导出CSV

    表  2  算法优化速度信息

    Table  2.   Speed informations of algorithm optimization

    算法 平均优化时间/s
    LEO 4.89
    EO[16] 8.12
    PSO[18] 5.64
    GWO[19] 4.95
    WOA[20] 6.31
    下载: 导出CSV
  • [1] HAAS F, GORB S, WOOTTON R J. Elastic joints in dermapteran hind wings: Materials and wing folding[J]. Arthropod Structure & Development, 2000, 29(2): 137-146.
    [2] 何肇雄, 郑震山, 马东立, 等. 国外跨介质飞行器发展历程及启示[J]. 舰船科学技术, 2016, 38(9): 152-157. doi: 10.3404/j.issn.1672-7619.2016.05.032

    HE Z X, ZHENG Z S, MA D L, et al. Development of foreign trans-media aircraft and its enlightenment to China[J]. Ship Science and Technology, 2016, 38(9): 152-157 (in Chinese). doi: 10.3404/j.issn.1672-7619.2016.05.032
    [3] 杨立本, 章卫国, 黄得刚. 基于ADRC姿态解耦的四旋翼飞行器鲁棒轨迹跟踪[J]. 北京航空航天大学学报, 2015, 41(6): 1026-1033.

    YANG L B, ZHANG W G, HUANG D G. Robust trajectory tracking for quadrotor aircraft based on ADRC attitude decoupling control[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6): 1026-1033 (in Chinese).
    [4] 石嘉, 裴忠才, 唐志勇, 等. 改进型自抗扰四旋翼无人机控制系统设计与实现[J]. 北京航空航天大学学报, 2021, 47(9): 1823-1831.

    SHI J, PEI Z C, TANG Z Y, et al. Design and realization of an improved active disturbance rejection quadrotor UAV control system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1823-1831 (in Chinese).
    [5] 韩京清. 自抗扰控制技术: 估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008: 197-270.

    HAN J Q. Active disturbance rejection control technique-the technique for estimating and compensating the uncertainties[M]. Beijing: National Defense Industry Press, 2008: 197-270 (in Chinese).
    [6] 高志强. 自抗扰控制思想探究[J]. 控制理论与应用, 2013, 30(12): 1498-1510. doi: 10.7641/CTA.2013.31087

    GAO Z Q. On the foundation of active disturbance rejection control[J]. Control Theory & Applications, 2013, 30(12): 1498-1510 (in Chinese). doi: 10.7641/CTA.2013.31087
    [7] 韩京清. 从PID技术到“自抗扰控制” 技术[J]. 控制工程, 2002, 9(3): 13-18. doi: 10.3969/j.issn.1671-7848.2002.03.003

    HAN J Q. From PID technique to active disturbances rejection control technique[J]. Basic Automation, 2002, 9(3): 13-18 (in Chinese). doi: 10.3969/j.issn.1671-7848.2002.03.003
    [8] 王丽君, 李擎, 童朝南, 等. 时滞系统的自抗扰控制综述[J]. 控制理论与应用, 2013, 30(12): 1521-1533. doi: 10.7641/CTA.2013.31058

    WANG L J, LI Q, TONG C N, et al. Overview of active disturbance rejection control for systems with time-delay[J]. Control Theory & Applications, 2013, 30(12): 1521-1533 (in Chinese). doi: 10.7641/CTA.2013.31058
    [9] 李述清, 张胜修, 刘毅男, 等. 根据系统时间尺度整定自抗扰控制器参数[J]. 控制理论与应用, 2012, 29(1): 125-129.

    LI S Q, ZHANG S X, LIU Y N, et al. Parameter-tuning in active disturbance rejection controller using time scale[J]. Control Theory & Applications, 2012, 29(1): 125-129 (in Chinese).
    [10] 李杰, 齐晓慧, 夏元清, 等. 线性/非线性自抗扰切换控制方法研究[J]. 自动化学报, 2016, 42(2): 202-212.

    LI J, QI X H, XIA Y Q, et al. On linear/nonlinear active disturbance rejection switching control[J]. Acta Automatica Sinica, 2016, 42(2): 202-212 (in Chinese).
    [11] LIANG S, RAJORA M, LIU X L, et al. Intelligent manufacturing systems: A review[J]. International Journal of Mechanical Engineering and Robotics Research, 2016, 7(2): 324-330. doi: 10.18178/ijmerr.7.3.324-330
    [12] LIU M, LIN R, YANG M, et al. Active disturbance rejection motion control of spherical robot with parameter tuning[J]. Industrial Robot, 2022, 49(2): 332-343. doi: 10.1108/IR-05-2021-0099
    [13] KANG C H, WANG S Q, REN W J, et al. Optimization design and application of active disturbance rejection controller based on intelligent algorithm[J]. IEEE Access, 2019, 7: 59862-59870. doi: 10.1109/ACCESS.2019.2909087
    [14] WOLPERT D H, MACREADY W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67-82. doi: 10.1109/4235.585893
    [15] KAMARUZAMAN A F, ZAIN A M, YUSUF S M, et al. Levy flight algorithm for optimization problems - a literature review[J]. Applied Mechanics and Materials, 2013, 421: 496-501. doi: 10.4028/www.scientific.net/AMM.421.496
    [16] 李守玉, 何庆, 陈俊. 改进平衡优化器算法在约束优化问题中的应用[J/OL]. 计算机科学与探索, 2021: 1-14 [2022-07-09]. https://kns.cnki.net/kcms/detail/11.5602.TP.20210901.1435.002.html.

    LI S Y, HE Q, CHEN J. Application of improved equilibrium optimizer algorithm to constrained optimization problems[J/OL]. Journal of Frontiers of Computer Science and Technology, 2021: 1-14 [2022-07-09]. https://kns.cnki.net/kcms/detail/11.5602.TP.20210901.1435.002.html (in Chinese).
    [17] 杨柳庆, 杨婷婷, 王鹏飞, 等. 一种基于莱维飞行的新型改进平衡全局优化算法[J]. 宇航计测技术, 2020, 40(5): 62-69. doi: 10.12060/j.issn.1000-7202.2020.05.10

    YANG L Q, YANG T T, WANG P F, et al. A new improved equilibrium global optimization algorithm based on Lévy flight[J]. Journal of Astronautic Metrology and Measurement, 2020, 40(5): 62-69 (in Chinese). doi: 10.12060/j.issn.1000-7202.2020.05.10
    [18] MARINI F, WALCZAK B. Particle swarm optimization (PSO): A tutorial[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 149: 153-165.
    [19] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
    [20] SAREMI S, MIRJALILI S Z, MIRJALILI S M. Evolutionary population dynamics and grey wolf optimizer[J]. Neural Computing and Applications, 2015, 26(5): 1257-1263.
    [21] 唐志勇, 马福源, 裴忠才. 四旋翼的改进PSO-RBF神经网络自适应滑模控制[J]. 北京航空航天大学学报, 2023, 49(7): 1563-1572.

    TANG Z Y, MA F Y, PEI Z C. Improved PSO-RBF neural network adaptive sliding mode control for quadrotor systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(7): 1563-1572 (in Chinese).
    [22] CHE J F, LI D H, JI Y H, et al. Attitude control for a quadrotor base on ADRC with GSO parameter optimization[C]//Proceedings of the Chinese Control and Decision Conference. Piscataway: IEEE Press, 2018: 1364-1369.
    [23] ALJARAH I, FARIS H, MIRJALILI S. Optimizing connection weights in neural networks using the whale optimization algorithm[J]. Soft Computing, 2018, 22(1): 1-15. doi: 10.1007/s00500-016-2442-1
    [24] 费伦, 段海滨, 徐小斌, 等. 基于变权重变异鸽群优化的无人机空中加油自抗扰控制器设计[J]. 航空学报, 2020, 41(1): 323490.

    FEI L, DUAN H B, XU X B, et al. ADRC controller design for UAV based on variable weighted mutant pigeon inspired optimization[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 323490 (in Chinese).
    [25] 杜作义, 马乐瑶. 基于Matlab/simulink的风速仿真研究[J]. 中国西部科技, 2013, 12(12): 46-47. doi: 10.3969/j.issn.1671-6396.2013.12.024

    DU Z Y, MA L Y. Wind speed simulation based on matlab/simulink[J]. Science and Technology of West China, 2013, 12(12): 46-47 (in Chinese). doi: 10.3969/j.issn.1671-6396.2013.12.024
    [26] 范培蕾, 张晓今, 杨涛. 高超声速飞行试验风场建模与仿真分析[J]. 战术导弹技术, 2009(2): 76-82. doi: 10.3969/j.issn.1009-1300.2009.02.018

    FAN P L, ZHANG X J, YANG T. Analyses of high altitude wind model of hypersonic vehicle test[J]. Tactical Missile Technology March, 2009(2): 76-82(in Chinese). doi: 10.3969/j.issn.1009-1300.2009.02.018
  • 加载中
图(22) / 表(2)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  96
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-09
  • 录用日期:  2022-09-08
  • 网络出版日期:  2022-09-21
  • 整期出版日期:  2024-08-28

目录

    /

    返回文章
    返回
    常见问答