留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂电磁环境辐射-散射耦合场快速预估方法

苏东林 崔朔 白江飞 李尧尧

苏东林, 崔朔, 白江飞, 等 . 复杂电磁环境辐射-散射耦合场快速预估方法[J]. 北京航空航天大学学报, 2022, 48(9): 1553-1560. doi: 10.13700/j.bh.1001-5965.2022.0705
引用本文: 苏东林, 崔朔, 白江飞, 等 . 复杂电磁环境辐射-散射耦合场快速预估方法[J]. 北京航空航天大学学报, 2022, 48(9): 1553-1560. doi: 10.13700/j.bh.1001-5965.2022.0705
SU Donglin, CUI Shuo, BAI Jiangfei, et al. Fast prediction method for radiated and scattered coupled fields in complex electromagnetic environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1553-1560. doi: 10.13700/j.bh.1001-5965.2022.0705(in Chinese)
Citation: SU Donglin, CUI Shuo, BAI Jiangfei, et al. Fast prediction method for radiated and scattered coupled fields in complex electromagnetic environment[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1553-1560. doi: 10.13700/j.bh.1001-5965.2022.0705(in Chinese)

复杂电磁环境辐射-散射耦合场快速预估方法

doi: 10.13700/j.bh.1001-5965.2022.0705
详细信息
    通讯作者:

    李尧尧, E-mail: liyaoyao@buaa.edu.cn

  • 中图分类号: TN974;V221+.92

Fast prediction method for radiated and scattered coupled fields in complex electromagnetic environment

More Information
  • 摘要:

    针对复杂电磁环境中目标散射体和干扰辐射源同时存在,影响目标回波散射场的问题,提出了一种基于辐射源方向图和极化散射矩阵数据的耦合场快速预估方法。利用可提前独立获取和加载的辐射源方向图及目标各个方向的散射数据,实现了辐射-散射耦合场景下空间总电磁场的近实时快速预估。仿真计算了辐射源与散射体不同距离和相对强度下场景的总电场变化情况,验证了辐射-散射耦合效应对目标回波场存在显著影响。无需使用电磁计算方法对场景进行重新计算,满足复杂电磁环境内场仿真试验对实时提供数据的需求,具有工程应用价值。

     

  • 图 1  辐射-散射耦合场景示意图

    Figure 1.  Radiated and scattered coupled fields

    图 2  极化散射矩阵数据库与场景中目标的坐标系定义

    Figure 2.  Coordinate system definitions of polarization scattering matrix database and target in the scene

    图 3  理想导体球与电偶极子仿真场景示意图

    Figure 3.  Simulation scene of a perfect conductor sphere and an electric dipole

    图 4  不同距离和辐射源强度倍数因子的理想导体球与电偶极子远场电场强度对比

    Figure 4.  Comparison of far-field electric field strength of a perfect conductor sphere and an electric dipole at different distances and radiation source intensity multiplier factors

    图 5  飞机与喇叭天线辐射源仿真场景示意图

    Figure 5.  Simulation scene of an aircraft and a conical horn antenna's radiated field

    图 6  不同距离和辐射源强度倍数因子的飞机与喇叭天线辐射源远场电场强度对比

    Figure 6.  Comparison of far-field electric field strength of an aircraft and a conical horn antenna's radiated field at different distances and radiation source intensity multiplier factors

  • [1] 隋起胜, 袁建全. 反舰导弹战场电磁环境仿真及试验鉴定技术[M]. 北京: 国防工业出版社, 2015: 1-8.

    SUI Q S, YUAN J Q. Anti-ship missile battlefield electromagnetic environment simulation and test identification technology[M]. Beijing: National Defense Industry Press, 2015: 1-8(in Chinese).
    [2] 苏东林, 谢树果, 戴飞, 等. 系统级电磁兼容性量化设计理论与方法[M]. 北京: 国防工业出版社, 2015: 49-52.

    SU D L, XIE S G, DAI F, et al. Theory and method for quantitative design of system-level electromagnetic compatibility[M]. Beijing: National Defense Industry Press, 2015: 49-52(in Chinese).
    [3] 王磊, 苏东林, 谢树果, 等. 飞机进近着陆电磁环境建模与辐射分布分析[J]. 北京航空航天大学学报, 2012, 38(10): 1369-1374. doi: 10.13700/j.bh.1001-5965.2012.10.023

    WANG L, SU D L, XIE S G, et al. Modeling of electromagnetic environment and radiation distribution analysis for aircraft approaching and landing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(10): 1369-1374(in Chinese). doi: 10.13700/j.bh.1001-5965.2012.10.023
    [4] 黄培康, 殷红成, 许小剑. 雷达目标特性[M]. 北京: 电子工业出版社, 2005: 4-22.

    HUANG P K, YIN H C, XU X J. Radar target characteristics[M]. Beijing: Publishing House of Electronics Industry, 2005: 4-22(in Chinese).
    [5] 何国瑜, 卢才成, 洪家才, 等. 电磁散射的计算和测量[M]. 北京: 北京航空航天大学出版社, 2004: 19-28.

    HE G Y, LU C C, HONG J C, et al. Calculation and measurement of electromagnetic scattering[M]. Beijing: Beihang University Press, 2004: 19-28(in Chinese).
    [6] ROY J E. The concept of the scattered field and the finite-difference time-domain method of the scattered-field formulation[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(9): 4102-4107. doi: 10.1109/TAP.2016.2583462
    [7] BICKEL S H. Some invariant properties of the polarization scattering matrix[J]. Proceedings of the IEEE, 1965, 53(8): 1070-1072. doi: 10.1109/PROC.1965.4088
    [8] LI C, LI Y Z, YANG Y, et al. Moving target's scattering matrix estimation with a polarimetric radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5540-5551. doi: 10.1109/TGRS.2020.2966905
    [9] 吴龙刚, 苏东林, 陈佳佳, 等. 半空间中机载甚低频双拖曳天线电磁辐射特性[J]. 北京航空航天大学学报, 2011, 37(11): 1471-1474. doi: 10.13700/j.bh.1001-5965.2011.11.007

    WU L G, SU D L, CHEN J J, et al. Analysis of electromagnetic radiation for airborne very-low-frequency(VLF) dual trailing antenna in half-space[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(11): 1471-1474(in Chinese). doi: 10.13700/j.bh.1001-5965.2011.11.007
    [10] LIU N W, ZHU L, LIU Z X, et al. Radiation pattern reshaping of a narrow slot antenna for bandwidth enhancement and stable pattern using characteristic modes analysis[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(1): 726-731. doi: 10.1109/TAP.2021.3098535
    [11] CAO X Y, CHEN M S, QI Q, et al. An improved GMRES method for solving electromagnetic scattering problems by MoM[J/OL]. IEEE Transactions on Antennas and Propagation, 2022(2022-07-07)[2022-08-10]. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9818956.
    [12] BOTELHO D P, MARECHAL Y, RAMDANE B. Higher order NEM and FEM accuracy comparison[J]. IEEE Transactions on Magnetics, 2015, 51(3): 1-4.
    [13] CHEN G Z, YANG S C, SU D L. An accurate three-dimensional FDTD(2, 4) method on face-centered cubic grids with low numerical dispersion[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(9): 1711-1715. doi: 10.1109/LAWP.2019.2926423
    [14] LEAO T F C, CHOPIN V M, TRUEMAN C W. Electromagnetic characterization of a gyproc slab by measurement and 3-D geometrical optics simulation[J]. IEEE Antennas and Wireless Propagation Letters, 2013, 12: 1570-1573. doi: 10.1109/LAWP.2013.2293342
    [15] 苏东林, 宗国明, 吕善伟. 武装直升飞机雷达散射截面的估算方法[J]. 北京航空航天大学学报, 1994, 20(3): 248-252. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK403.003.htm

    SU D L, ZONG G M, LV S W. The method of calculating radar cross section of fighting helicopters[J]. Journal of Beijing University of Aeronautics and Astronautics, 1994, 20(3): 248-252(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK403.003.htm
    [16] 苏东林, 曾国奇, 刘焱, 等. 运动目标RCS特性分析[J]. 北京航空航天大学学报, 2006, 32(12): 1413-1417. doi: 10.3969/j.issn.1001-5965.2006.12.005

    SU D L, ZENG G Q, LIU Y, et al. RCS study of moving radar targets[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(12): 1413-1417(in Chinese). doi: 10.3969/j.issn.1001-5965.2006.12.005
    [17] WANG J J, GUO L X, WEI Y W, et al. Application of the improved SBR-TSM based on MPI to EM scattering from multiple targets above a 3-D rough sea surface[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 21(2): 411-415. doi: 10.1109/LAWP.2021.3134068
    [18] 苏东林, 王宝发, 张采来. 目标外形拟合及雷达散射截面计算[J]. 北京航空航天大学学报, 1990(1): 101-108. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK199001019.htm

    SU D L, WANG B F, ZHANG C L. Contour mimicry of targets & radat cross section's calculation[J]. Journal of Beijing University of Aeronautics and Astronautics, 1990(1): 101-108(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK199001019.htm
    [19] 王冰切, 苏东林, 张晓雷. 飞机表面绕射射线的寻迹方法[J]. 北京航空航天大学学报, 2007, 33(7): 785-788. doi: 10.3969/j.issn.1001-5965.2007.07.009

    WANG B Q, SU D L, ZHANG X L. Discrete ray path tracing on aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(7): 785-788(in Chinese). doi: 10.3969/j.issn.1001-5965.2007.07.009
    [20] 李尧尧, 苏东林, 刘焱, 等. 高精度法矢下切割面自适应的凸曲面射线寻迹[J]. 北京航空航天大学学报, 2016, 42(12): 2632-2639. doi: 10.13700/j.bh.1001-5965.2016.0442

    LI Y Y, SU D L, LIU Y, et al. Convex surface ray tracing based on adaptive cutting surface adjustment under exact normal vector[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(12): 2632-2639(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0442
    [21] TZOULIS A, EIBERT T F. A hybrid FEBI-MLFMM-UTD method for numerical solutions of electromagnetic problems including arbitrarily shaped and electrically large objects[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(10): 3358-3366. doi: 10.1109/TAP.2005.856348
    [22] KARAGOUNIS G, ZUTTER D D, GINSTE D V. A hybrid MLFMM-UTD method for the solution of very large 2-D electromagnetic problems[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(1): 224-234.
    [23] HUO J C, XU L, SHI X W, et al. An accelerated shooting and bouncing ray method based on GPU and virtual ray tube for fast RCS prediction[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(9): 1839-1843.
    [24] XIAO D H, GUO L X, LIU W, et al. Improved Gaussian process regression inspired by physical optics for the conducting target's RCS prediction[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(12): 2403-2407.
    [25] LIU Z, WANG L F, WEN Z D, et al. Multilevel scattering center and deep feature fusion learning framework for SAR target recognition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-14.
  • 加载中
图(6)
计量
  • 文章访问数:  475
  • HTML全文浏览量:  123
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-01
  • 录用日期:  2022-08-18
  • 网络出版日期:  2022-08-23

目录

    /

    返回文章
    返回
    常见问答