留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于视觉的机场无人驱鸟车路径规划算法

王蕊 李金洺 史玉龙 孙辉

王蕊,李金洺,史玉龙,等. 基于视觉的机场无人驱鸟车路径规划算法[J]. 北京航空航天大学学报,2024,50(5):1446-1453 doi: 10.13700/j.bh.1001-5965.2022.0717
引用本文: 王蕊,李金洺,史玉龙,等. 基于视觉的机场无人驱鸟车路径规划算法[J]. 北京航空航天大学学报,2024,50(5):1446-1453 doi: 10.13700/j.bh.1001-5965.2022.0717
WANG R,LI J M,SHI Y L,et al. Vision-based path planning algorithm of unmanned bird-repelling vehicles in airports[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1446-1453 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0717
Citation: WANG R,LI J M,SHI Y L,et al. Vision-based path planning algorithm of unmanned bird-repelling vehicles in airports[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(5):1446-1453 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0717

基于视觉的机场无人驱鸟车路径规划算法

doi: 10.13700/j.bh.1001-5965.2022.0717
详细信息
    通讯作者:

    E-mail:huisun@cauc.edu.cn

  • 中图分类号: TP751

Vision-based path planning algorithm of unmanned bird-repelling vehicles in airports

More Information
  • 摘要:

    机场飞行区存在的低空飞鸟严重威胁飞行器的起飞和降落安全,现有的驱鸟措施难以高效驱离低空飞鸟,且存在设备资源消耗高、受时空影响大等问题。为此,使用无人驱鸟车替代有人驾驶车辆进行驱鸟工作,并使用搭载固定摄像云台的无人驱鸟车对机场低空中鸟类进行实时检测,获取鸟情数据后,为无人驱鸟车路径规划提供鸟情数据基础。针对鸟类检测的问题,提出一种基于坐标注意力机制改进的YOLOv5网络,对小目标鸟类进行高效的实时检测,使网络更加精准地对鸟类进行定位;针对传统路径规划算法存在路径距离较长、拐点较多等缺陷,提出一种改进的天牛群算法,可有效缩短无人驱鸟车行驶距离,精准躲避机场内静态障碍物和动态障碍物,并快速到达指定驱鸟位置。实验结果表明:所提算法可对机场鸟类进行有效检测,为无人驱鸟车及时提供鸟情数据,利用改进的天牛群算法缩短规划路径的距离,使无人驱鸟车更加精准快速地到达指定驱鸟位置,有效减少人力资源投入,节约无人驱鸟车行进所需能源,提高驱鸟效率。

     

  • 图 1  坐标注意力机制

    Figure 1.  Coordinate attention mechanism

    图 2  路径规划环境建模示意图

    Figure 2.  Schematic diagram of environmental modeling for path planning

    图 3  改进天牛群算法流程

    Figure 3.  Flow of improved beetle swarm optimization algorithm

    图 4  基于天气因素的数据增强

    Figure 4.  Data enhancement based on weather factors

    图 5  4种算法静态环境下路径规划仿真结果

    Figure 5.  Simulation results of path planning in static environment compared with four algorithms

    图 6  存在动态障碍物的路径规划仿真结果

    Figure 6.  Simulation results of path planning in the presence of dynamic obstacles

    表  1  改进的CSPDarkNet53主干网络结构

    Table  1.   Improved CSPDarknet53 backbone network architecture

    模块 数量 参数量 尺寸 输出尺寸
    Focus 1 3520 1×1 320×320
    Conv 1 18560 3×3 160×160
    C3 3 18816 160×160
    CA 1 1688 160×160
    Conv 1 73984 3×3 80×80
    C3 9 156928 80×80
    CA 1 3352 80×80
    Conv 1 295424 3×3 40×40
    C3 9 625152 40×40
    CA 1 6680 40×40
    Conv 1 1180672 3×3 20×20
    SPP 1 656896 1×1, 5×5, 9×9, 13×13 20×20
    C3 3 1182720 20×20
    下载: 导出CSV

    表  2  鸟类检测实验结果对比

    Table  2.   Comparison of bird detection experimental results

    方法召回率精准率平均精度检测速度/(帧·s−1)
    YOLOv50.8230.8410.87457.2
    改进YOLOv50.9020.9140.93155.9
    下载: 导出CSV

    表  3  4种算法运行100次的路径长度平均值

    Table  3.   Average path length of the four algorithms for 100 runs

    算法 路径长度/m
    A-star 86.122
    PSO 89.725
    IBSO 84.736
    IBSO2 83.026
    下载: 导出CSV
  • [1] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. doi: 10.1109/TPAMI.2015.2389824
    [2] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 580-587.
    [3] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
    [4] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 779-788.
    [5] REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 7263-7271.
    [6] REDMON J, FARHADI A. YOLOv3: An incremental improvement[EB/OL]. (2018-04-08)[2022-05-25]. https://arxiv.org/abs/1804.02767.
    [7] BOCHKOVSKIY A, WANG C Y, LIAO H Y. YOLOv4: Optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2022-05-25]. https://arxiv.org/abs/2004.10934.
    [8] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 13713-13722.
    [9] 赵江, 张岩, 马泽文, 等. 对AGV路径规划A星算法的改进与验证[J]. 计算机工程与应用, 2018, 54(21): 217-223.

    ZHAO J, ZHANG Y, MA Z W, et al. Improvement and verification of A-star algorithm for AGV path planning[J]. Computer Engineering and Applications, 2018, 54(21): 217-223(in Chinese).
    [10] TANG G, TANG C Q, CLARAMUNT C, et al. A-star algorithm: An improved A-star algorithm for AGV path planning in a port environment[J]. IEEE Access, 2021, 9: 59196-59210 . doi: 10.1109/ACCESS.2021.3070054
    [11] OROZCO-ROSAS U, PICOS K, MONTIEL O. Hybrid path planning algorithm based on membrane pseudo-bacterial potential field for autonomous mobile robots[J]. IEEE Access, 2019, 7: 156787-156803. doi: 10.1109/ACCESS.2019.2949835
    [12] 张万绪, 张向兰, 李莹. 基于改进粒子群算法的智能机器人路径规划[J]. 计算机应用, 2014, 34(2): 510-513.

    ZHANG W X, ZHANG X L, LI Y. Path planning for intelligent robots based on improved particle swarm optimization algorithm[J]. Journal of Computer Applications, 2014, 34(2): 510-513(in Chinese).
    [13] 柳长安, 鄢小虎, 刘春阳, 等. 基于改进蚁群算法的移动机器人动态路径规划方法[J]. 电子学报, 2011, 39(5): 1220-1224.

    LIU C A, YAN X H, LIU C Y, et al. Dynamic path planning for mobile robot based on improved ant colony optimization algorithm[J]. Acta Electronica Sinica, 2011, 39(5): 1220-1224(in Chinese).
    [14] VIEIRA R, ARGENTO E, REVOREDO T. Trajectory planning for car-like robots through curve parametrization and genetic algorithm optimization with applications to autonomous parking[J]. IEEE Latin America Transactions, 2022, 20(2): 309-316. doi: 10.1109/TLA.2022.9661471
    [15] 杨俊成, 李淑霞, 蔡增玉. 路径规划算法的研究与发展[J]. 控制工程, 2017, 24(7): 1473-1480.

    YANG J C, LI S X, CAI Z Y. Research and development of path planning algorithm[J]. Control Engineering of China, 2017, 24(7): 1473-1480(in Chinese).
    [16] 魏彤, 龙琛. 基于改进遗传算法的移动机器人路径规划[J]. 北京航空航天大学学报, 2020, 46(4): 703-711.

    WEI T, LONG C. Path planning for mobile robot based on improved genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 703-711(in Chinese).
    [17] 段安娜, 周锐, 邸斌. 考虑先验信息的多机器人重点区域协同覆盖[J]. 北京航空航天大学学报, 2023, 49(6): 1479-1486.

    DUAN A N, ZHOU R, DI B. Multi-robot cooperative coverage of key regions considering priorinformation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(6): 1479-1486(in Chinese).
    [18] 赵萌, 路辉, 王诗琪, 等. 多种群合作学习的多模态多目标路径规划算法[J]. 北京航空航天大学学报, 2023, 49(3): 606-616.

    ZHAO M, LU H, WANG S Q, et al. A multimodal multi-objective path planning algorithm based on multi-swarm cooperative learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(3): 606-616(in Chinese).
    [19] 孙波, 陈卫东, 席裕庚. 基于粒子群优化算法的移动机器人全局路径规划[J]. 控制与决策, 2005, 20(9): 1052-1055.

    SUN B, CHEN W D, XI Y G. Particle swarm optimization based global path planning for mobile robots[J]. Control and Decision, 2005, 20(9): 1052-1055(in Chinese).
    [20] TONG Y F, ZHONG M, LI J W, et al. Research on intelligent welding robot path optimization based on GA and PSO algorithms[J]. IEEE Access, 2018, 6: 65397-65404. doi: 10.1109/ACCESS.2018.2878615
    [21] 赵辉, 郝梦雅, 王红君, 等. 基于改进A*算法与天牛须搜索算法的农业机器人路径规划方法[J]. 科学技术与工程, 2019, 19(31): 185-190.

    ZHAO H, HAO M Y, WANG H J, et al. Path planning method of agricultural robot based on improved A* algorithm and beetle antennae search algorithm[J]. Science Technology and Engineering, 2019, 19(31): 185-190(in Chinese).
    [22] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7132-7141.
    [23] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2018: 3-19.
    [24] 单梁, 强浩, 李军, 等. 基于Tent映射的混沌优化算法[J]. 控制与决策, 2005, 20(2): 179-182.

    SHAN L, QIANG H, LI J, et al. Chaos optimization algorithm based Tent map[J]. Control and Decision, 2005, 20(2): 179-182(in Chinese).
    [25] WANG R, LI J M. A new improved beetle swarm optimization algorithm[C]//Proceedings of the Chinese Intelligent Systems Conference. Berlin: Springer, 2021, 805: 663-671.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  298
  • HTML全文浏览量:  103
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-16
  • 录用日期:  2022-09-23
  • 网络出版日期:  2022-12-14
  • 整期出版日期:  2024-05-29

目录

    /

    返回文章
    返回
    常见问答