留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非生物环境因子干扰对微生物群落演替影响的研究进展

胡大伟 李帅帅 刘光辉

胡大伟,李帅帅,刘光辉. 非生物环境因子干扰对微生物群落演替影响的研究进展[J]. 北京航空航天大学学报,2024,50(9):2677-2687 doi: 10.13700/j.bh.1001-5965.2022.0736
引用本文: 胡大伟,李帅帅,刘光辉. 非生物环境因子干扰对微生物群落演替影响的研究进展[J]. 北京航空航天大学学报,2024,50(9):2677-2687 doi: 10.13700/j.bh.1001-5965.2022.0736
HU D W,LI S S,LIU G H. Research progress on influence of disturbance of abiotic environmental factors on microbial community succession[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2677-2687 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0736
Citation: HU D W,LI S S,LIU G H. Research progress on influence of disturbance of abiotic environmental factors on microbial community succession[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(9):2677-2687 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0736

非生物环境因子干扰对微生物群落演替影响的研究进展

doi: 10.13700/j.bh.1001-5965.2022.0736
基金项目: 国家重点研发计划(2021YFA0716100);国家自然科学基金国际(地区)合作研究项目(32261133528)
详细信息
    通讯作者:

    E-mail:liugh1991@126.com

  • 中图分类号: Q938.1+5;V7

Research progress on influence of disturbance of abiotic environmental factors on microbial community succession

Funds: National Key Research and Development Program of China (2021YFA0716100); Fund for International Cooperation and Exchange of the Natural Science Foundation of China (32261133528)
More Information
  • 摘要:

    了解驱动群落演替的因素是微生物生态学的中心目标之一,非生物环境因子影响着单个种群的生长及种群之间的相互作用。微生物群落非常敏感,很容易对作为干扰的非生物环境因子的变化产生响应。研究不同类型的干扰如何产生不同的影响,将增强对微生物群落多样性、结构和功能之间关系的认识。以作用对象为分类标准,梳理了各种非生物环境因子干扰对微生物群落演替的影响研究,包括非特异性、特异性及航天等特殊环境下的非生物环境因子。从干扰程度的量化、多因素干扰影响及干扰后演替的时间过程等方面,得出研究干扰下群落多样性演替机制的关键问题。展望了未来需要探索的方向,并提出相关研究建议。

     

  • [1] WELLBORN G A, SKELLY D K, WERNER E E. Mechanisms creating community structure across a freshwater habitat gradient[J]. Annual Review of Ecology, Evolution, and Systematics, 1996, 27: 337-363. doi: 10.1146/annurev.ecolsys.27.1.337
    [2] WERNER E E. Species packing and niche complementarity in three sunfishes[J]. The American Naturalist, 1977, 111(979): 553-578. doi: 10.1086/283184
    [3] TILMAN D. The importance of the mechanisms of interspecific competition[J]. The American Naturalist, 1987, 129(5): 769-774. doi: 10.1086/284672
    [4] GORTER F A, MANHART M, ACKERMANN M. Understanding the evolution of interspecies interactions in microbial communities[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375(1798): 20190256. doi: 10.1098/rstb.2019.0256
    [5] KONOPKA A. What is microbial community ecology?[J]. The ISME Journal, 2009, 3(11): 1223-1230. doi: 10.1038/ismej.2009.88
    [6] MOUILLOT D, GRAHAM N A J, VILLÉGER S, et al. A functional approach reveals community responses to disturbances[J]. Trends in Ecology & Evolution, 2013, 28(3): 167-177.
    [7] BRIONES A, RASKIN L. Diversity and dynamics of microbial communities in engineered environments and their implications for process stability[J]. Current Opinion in Biotechnology, 2003, 14(3): 270-276. doi: 10.1016/S0958-1669(03)00065-X
    [8] STEGEN J C, LIN X J, FREDRICKSON J K, et al. Quantifying community assembly processes and identifying features that impose them[J]. The ISME Journal, 2013, 7(11): 2069-2079. doi: 10.1038/ismej.2013.93
    [9] POWELL J R, KARUNARATNE S, CAMPBELL C D, et al. Deterministic processes vary during community assembly for ecologically dissimilar taxa[J]. Nature Communications, 2015, 6: 8444. doi: 10.1038/ncomms9444
    [10] ZHOU J Z, NING D L. Stochastic community assembly: Does it matter in microbial ecology?[J]. Microbiology and Molecular Biology Reviews, 2017, 81(4): e00002-e00017.
    [11] TILMAN D. Resource competition and community structure[M]. Princeton: Princeton University Press, 1982.
    [12] ABREU C I, FRIEDMAN J, ANDERSEN WOLTZ V L, et al. Mortality causes universal changes in microbial community composition[J]. Nature Communications, 2019, 10: 2120. doi: 10.1038/s41467-019-09925-0
    [13] RYKIEL E J. Towards a definition of ecological disturbance[J]. Australian Journal of Ecology, 1985, 10(3): 361-365. doi: 10.1111/j.1442-9993.1985.tb00897.x
    [14] SANTILLAN E, SESHAN H, CONSTANCIAS F, et al. Frequency of disturbance alters diversity, function, and underlying assembly mechanisms of complex bacterial communities[J]. NPJ Biofilms and Microbiomes, 2019, 5: 8. doi: 10.1038/s41522-019-0079-4
    [15] MACKEY R L, CURRIE D J. The diversity-disturbance relationship: Is it generally strong and peaked?[J]. Ecology, 2001, 82(12): 3479.
    [16] SHADE A, PETER H, ALLISON S D, et al. Fundamentals of microbial community resistance and resilience[J]. Frontiers in Microbiology, 2012, 3: 417.
    [17] SHADE A, READ J S, YOUNGBLUT N D, et al. Lake microbial communities are resilient after a whole-ecosystem disturbance[J]. The ISME Journal, 2012, 6(12): 2153-2167. doi: 10.1038/ismej.2012.56
    [18] SOUSA W. The role of disturbance in natural communities[J]. Annual Review of Ecology, Evolution, and Systematics, 1984, 15: 353-391. doi: 10.1146/annurev.es.15.110184.002033
    [19] MYKRÄ H, TOLKKINEN M, HEINO J. Environmental degradation results in contrasting changes in the assembly processes of stream bacterial and fungal communities[J]. Oikos, 2017, 126(9): 1291-1298. doi: 10.1111/oik.04133
    [20] ALLISON S D, MARTINY J B H. Resistance, resilience, and redundancy in microbial communities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(Suppl 1): 11512-11519.
    [21] DETHLEFSEN L, RELMAN D A. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(Suppl 1): 4554-4561.
    [22] FERRENBERG S, O’NEILL S P, KNELMAN J E, et al. Changes in assembly processes in soil bacterial communities following a wildfire disturbance[J]. The ISME Journal, 2013, 7(6): 1102-1111. doi: 10.1038/ismej.2013.11
    [23] CONNELL J H. The influence of interspecific competition and other factors on the distribution of the barnacle chthamalusstellatus[J]. Ecology, 1961, 42(4): 710-723. doi: 10.2307/1933500
    [24] 尚玉昌. 普通生态学[M]. 3版. 北京: 北京大学出版社, 2010.

    SHANG Y C. General ecology[M]. 3rd ed. Beijing: Peking University Press, 2010(in Chinese).
    [25] FOX J W. The intermediate disturbance hypothesis should be abandoned[J]. Trends in Ecology & Evolution, 2013, 28(2): 86-92.
    [26] ORROCK J L, WATLING J I. Local community size mediates ecological drift and competition in metacommunities[J]. Proceedings Biological Sciences, 2010, 277(1691): 2185-2191.
    [27] ATLAS R M. Diversity of microbial communities[M]//MARSHALL K C. Advances in microbial ecology. Berlin: Springer, 1984: 1-47.
    [28] ATLAS R M, HOROWITZ A, KRICHEVSKY M, et al. Response of microbial populations to environmental disturbance[J]. Microbial Ecology, 1991, 22(3): 249-256. doi: 10.1007/BF02540227
    [29] MÜLLER A K, WESTERGAARD K, CHRISTENSEN S, et al. The diversity and function of soil microbial communities exposed to different disturbances[J]. Microbial Ecology, 2002, 44(1): 49-58. doi: 10.1007/s00248-001-0042-8
    [30] BENDER E A, CASE T J, GILPIN M E. Perturbation experiments in community ecology: Theory and practice[J]. Ecology, 1984, 65(1): 1-13. doi: 10.2307/1939452
    [31] SCHEUERL T, KAITALA V. The effect of dilution on eco-evolutionary dynamics of experimental microbial communities[J]. Ecology and Evolution, 2021, 11(19): 13430-13444. doi: 10.1002/ece3.8065
    [32] SOMMER U. Phytoplankton competition along a gradient of dilution rates[J]. Oecologia, 1986, 68(4): 503-506. doi: 10.1007/BF00378762
    [33] SPIJKERMAN E, COESEL P F M. Competition for phosphorus among planktonic desmid species in continuous-flow culture[J]. Journal of Phycology, 1996, 32(6): 939-948. doi: 10.1111/j.0022-3646.1996.00939.x
    [34] ABREU C I, ANDERSEN WOLTZ V L, FRIEDMAN J, et al. Microbial communities display alternative stable states in a fluctuating environment[J]. PLoS Computational Biology, 2020, 16(5): e1007934. doi: 10.1371/journal.pcbi.1007934
    [35] CHESSON P, HUNTLY N. The roles of harsh and fluctuating conditions in the dynamics of ecological communities[J]. The American Naturalist, 1997, 150(5): 519-553. doi: 10.1086/286080
    [36] KAITALA V, HILTUNEN T, BECKS L, et al. Co-evolution as an important component explaining microbial predator-prey interaction[J]. Journal of Theoretical Biology, 2020, 486: 110095. doi: 10.1016/j.jtbi.2019.110095
    [37] STEVENSON B S, SCHMIDT T M. Life history implications of rRNA gene copy number in Escherichia coli[J]. Applied and Environmental Microbiology, 2004, 70(11): 6670-6677. doi: 10.1128/AEM.70.11.6670-6677.2004
    [38] KLAPPENBACH J A, DUNBAR J M, SCHMIDT T M. rRNA operon copy number reflects ecological strategies of bacteria[J]. Applied and Environmental Microbiology, 2000, 66(4): 1328-1333. doi: 10.1128/AEM.66.4.1328-1333.2000
    [39] WANG M X, LIU X N, NIE Y, et al. Selfishness driving reductive evolution shapes interdependent patterns in spatially structured microbial communities[J]. The ISME Journal, 2021, 15(5): 1387-1401. doi: 10.1038/s41396-020-00858-x
    [40] ESCALANTE A E, REBOLLEDA-GÓMEZ M, BENÍTEZ M, et al. Ecological perspectives on synthetic biology: Insights from microbial population biology[J]. Frontiers in Microbiology, 2015, 6: 143.
    [41] HARCOMBE W. Novel cooperation experimentally evolved between species[J]. Evolution, 2010, 64(7): 2166-2172.
    [42] RAYNAUD X, NUNAN N. Spatial ecology of bacteria at the microscale in soil[J]. PLoS One, 2014, 9(1): e87217. doi: 10.1371/journal.pone.0087217
    [43] AMOR D R, DAL BELLO M. Bottom-up approaches to synthetic cooperation in microbial communities[J]. Life, 2019, 9(1): 22. doi: 10.3390/life9010022
    [44] LI S S, LIU H, LIU G H, et al. Simulated artificial interventions maintain species diversity of spatially structured microbial communities in closed ecosystem[J]. Acta Astronautica, 2022, 201: 39-47. doi: 10.1016/j.actaastro.2022.08.023
    [45] WOODWARD G, PERKINS D M, BROWN L E. Climate change and freshwater ecosystems: Impacts across multiple levels of organization[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365(1549): 2093-2106. doi: 10.1098/rstb.2010.0055
    [46] RAMONEDA J, HAWES I, PASCUAL-GARCÍA A, et al. Importance of environmental factors over habitat connectivity in shaping bacterial communities in microbial mats and bacterioplankton in an Antarctic freshwater system[J]. FEMS Microbiology Ecology, 2021, 97(4): fiab044. doi: 10.1093/femsec/fiab044
    [47] CHOWN S L, CLARKE A, FRASER C I, et al. The changing form of Antarctic biodiversity[J]. Nature, 2015, 522: 431-438. doi: 10.1038/nature14505
    [48] HAWES I, SMITH R, HOWARD-WILLIAMS C, et al. Environmental conditions during freezing, and response of microbial mats in ponds of the McMurdo Ice Shelf, Antarctica[J]. Antarctic Science, 1999, 11(2): 198-208. doi: 10.1017/S0954102099000267
    [49] JUVIGNY-KHENAFOU N P D, PIGGOTT J J, ATKINSON D, et al. Fine sediment and flow velocity impact bacterial community and functional profile more than nutrient enrichment[J]. Ecological Applications, 2021, 31(1): e02212. doi: 10.1002/eap.2212
    [50] HARTWIG M, BORCHARDT D. Alteration of key hyporheic functions through biological and physical clogging along a nutrient and fine-sediment gradient[J]. Ecohydrology, 2015, 8(5): 961-975. doi: 10.1002/eco.1571
    [51] BESEMER K. Biodiversity, community structure and function of biofilms in stream ecosystems[J]. Research in Microbiology, 2015, 166(10): 774-781. doi: 10.1016/j.resmic.2015.05.006
    [52] STEVENS C L, HURD C L. Boundary-layers around bladed aquatic macrophytes[J]. Hydrobiologia, 1997, 346(1): 119-128.
    [53] SALIS R K, BRUDER A, PIGGOTT J J, et al. High-throughput amplicon sequencing and stream benthic bacteria: Identifying the best taxonomic level for multiple-stressor research[J]. Scientific Reports, 2017, 7: 44657. doi: 10.1038/srep44657
    [54] NUY J K, LANGE A, BEERMANN A J, et al. Responses of stream microbes to multiple anthropogenic stressors in a mesocosm study[J]. The Science of the Total Environment, 2018, 633: 1287-1301. doi: 10.1016/j.scitotenv.2018.03.077
    [55] WAGG C, DUDENHÖFFER J H, WIDMER F, et al. Linking diversity, synchrony and stability in soil microbial communities[J]. Functional Ecology, 2018, 32(5): 1280-1292. doi: 10.1111/1365-2435.13056
    [56] HABIG J, LABUSCHAGNE J, MARAIS M, et al. The effect of a medic-wheat rotational system and contrasting degrees of soil disturbance on nematode functional groups and soil microbial communities[J]. Agriculture, Ecosystems & Environment, 2018, 268: 103-114.
    [57] PELLKOFER S, VAN DER HEIJDEN M G A, SCHMID B, et al. Soil communities promote temporal stability and species asynchrony in experimental grassland communities[J]. PLoS One, 2016, 11(2): e0148015. doi: 10.1371/journal.pone.0148015
    [58] WAGG C, BENDER S F, WIDMER F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality[J]. Proceedings of the National Academy of Science of the United States of America, 2014, 111(14): 5266-5270. doi: 10.1073/pnas.1320054111
    [59] LAUBER C L, RAMIREZ K S, AANDERUD Z, et al. Temporal variability in soil microbial communities across land-use types[J]. The ISME Journal, 2013, 7(8): 1641-1650. doi: 10.1038/ismej.2013.50
    [60] BRADFORD M A, WOOD S A, BARDGETT R D, et al. Discontinuity in the responses of ecosystem processes and multifunctionality to altered soil community composition[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(40): 14478-14483.
    [61] GRIFFITHS B S, KUAN H L, RITZ K, et al. The relationship between microbial community structure and functional stability, tested experimentally in an upland pasture soil[J]. Microbial Ecology, 2004, 47(1): 104-113. doi: 10.1007/s00248-002-2043-7
    [62] LOREAU M. From populations to ecosystems[M]. Princeton: Princeton University Press, 2010.
    [63] LOREAU M, DE MAZANCOURT C. Species synchrony and its drivers: Neutral and nonneutral community dynamics in fluctuating environments[J]. The American Naturalist, 2008, 172(2): 48-66. doi: 10.1086/589746
    [64] GONZALEZ A, LOREAU M. The causes and consequences of compensatory dynamics in ecological communities[J]. Annual Review of Ecology, Evolution, and Systematics, 2009, 40: 393-414. doi: 10.1146/annurev.ecolsys.39.110707.173349
    [65] SILVA A P. Bacterial diversity under different tillage and crop rotation systems in an oxisol of southern Brazil[J]. The Open Agriculture Journal, 2013, 7(1): 40-47. doi: 10.2174/1874331501307010040
    [66] FINLAY B J. Global dispersal of free-living microbial eukaryote species[J]. Science, 2002, 296(5570): 1061-1063. doi: 10.1126/science.1070710
    [67] LOGUE J B, MOUQUET N, PETER H, et al. Empirical approaches to metacommunities: A review and comparison with theory[J]. Trends in Ecology & Evolution, 2011, 26(9): 482-491.
    [68] BAHO D L, PETER H, TRANVIK L J. Resistance and resilience of microbial communities: Temporal and spatial insurance against perturbations[J]. Environmental Microbiology, 2012, 14(9): 2283-2292. doi: 10.1111/j.1462-2920.2012.02754.x
    [69] URBAN M C, DE MEESTER L. Community monopolization: Local adaptation enhances priority effects in an evolving metacommunity[J]. Proceedings Biological Sciences, 2009, 276(1676): 4129-4138.
    [70] SHULMAN M J, OGDEN J C, EBERSOLE J P, et al. Priority effects in the recruitment of juvenile coral reef fishes[J]. Ecology, 1983, 64(6): 1508-1513. doi: 10.2307/1937505
    [71] SHADE A, READ J S, WELKIE D G, et al. Resistance, resilience and recovery: Aquatic bacterial dynamics after water column disturbance[J]. Environmental Microbiology, 2011, 13(10): 2752-2767. doi: 10.1111/j.1462-2920.2011.02546.x
    [72] WANG M, CHEN S B, CHEN L, et al. Responses of soil microbial communities and their network interactions to saline-alkaline stress in Cd-contaminated soils[J]. Environmental Pollution, 2019, 252: 1609-1621. doi: 10.1016/j.envpol.2019.06.082
    [73] ZENG X Y, LI S W, LENG Y, et al. Structural and functional responses of bacterial and fungal communities to multiple heavy metal exposure in arid loess[J]. The Science of the Total Environment, 2020, 723: 138081. doi: 10.1016/j.scitotenv.2020.138081
    [74] ROUSK J, BÅÅTH E, BROOKES P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil[J]. The ISME Journal, 2010, 4(10): 1340-1351. doi: 10.1038/ismej.2010.58
    [75] DE VRIES F T, MANNING P, TALLOWIN J R B, et al. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities[J]. Ecology Letters, 2012, 15(11): 1230-1239. doi: 10.1111/j.1461-0248.2012.01844.x
    [76] WEI W, YANG M, LIU Y X, et al. Fertilizer N application rate impacts plant-soil feedback in a Sanqi production system[J]. The Science of the Total Environment, 2018, 633: 796-807. doi: 10.1016/j.scitotenv.2018.03.219
    [77] MEENA R, DATTA S P, GOLUI D, et al. Long-term impact of sewage irrigation on soil properties and assessing risk in relation to transfer of metals to human food chain[J]. Environmental Science and Pollution Research, 2016, 23(14): 14269-14283. doi: 10.1007/s11356-016-6556-x
    [78] FENG G, XIE T, WANG X, et al. Metagenomic analysis of microbial community and function involved in Cd-contaminated soil[J]. BMC Microbiology, 2018, 18(1): 11. doi: 10.1186/s12866-018-1152-5
    [79] CUI H, LIU L L, DAI J R, et al. Bacterial community shaped by heavy metals and contributing to health risks in cornfields[J]. Ecotoxicology and Environmental Safety, 2018, 166: 259-269. doi: 10.1016/j.ecoenv.2018.09.096
    [80] ZHANG H, WAN Z W, DING M J, et al. Inherent bacterial community response to multiple heavy metals in sediment from river-lake systems in the Poyang Lake, China[J]. Ecotoxicology and Environmental Safety, 2018, 165: 314-324. doi: 10.1016/j.ecoenv.2018.09.010
    [81] KUPPUSAMY S, THAVAMANI P, MEGHARAJ M, et al. Pyrosequencing analysis of bacterial diversity in soils contaminated long-term with PAHs and heavy metals: Implications to bioremediation[J]. Journal of Hazardous Materials, 2016, 317: 169-179. doi: 10.1016/j.jhazmat.2016.05.066
    [82] SCHNEIDER G K. Dürrenmatts Besuch der alten dame und hebbels Die nibelungen. urbilder und jugendlektüre[J]. The German Quarterly, 2017, 90(1): 36-54. doi: 10.1111/gequ.12020
    [83] PAN X M, ZHANG S R, ZHONG Q M, et al. Effects of soil chemical properties and fractions of Pb, Cd, and Zn on bacterial and fungal communities[J]. The Science of the Total Environment, 2020, 715: 136904. doi: 10.1016/j.scitotenv.2020.136904
    [84] MUTURI E J, DONTHU R K, FIELDS C J, et al. Effect of pesticides on microbial communities in container aquatic habitats[J]. Scientific Reports, 2017, 7: 44565. doi: 10.1038/srep44565
    [85] RUSSELL R J, SCOTT C, JACKSON C J, et al. The evolution of new enzyme function: lessons from xenobiotic metabolizing bacteria versus insecticide-resistant insects[J]. Evolutionary Applications, 2011, 4(2): 225-248. doi: 10.1111/j.1752-4571.2010.00175.x
    [86] WIDENFALK A, BERTILSSON S, SUNDH I, et al. Effects of pesticides on community composition and activity of sediment microbes: Responses at various levels of microbial community organization[J]. Environmental Pollution, 2008, 152(3): 576-584. doi: 10.1016/j.envpol.2007.07.003
    [87] SCHÄFER R B, BUNDSCHUH M, ROUCH D A, et al. Effects of pesticide toxicity, salinity and other environmental variables on selected ecosystem functions in streams and the relevance for ecosystem services[J]. The Science of the Total Environment, 2012, 415: 69-78. doi: 10.1016/j.scitotenv.2011.05.063
    [88] GOLDFORD J E, LU N X, BAJIĆ D, et al. Emergent simplicity in microbial community assembly[J]. Science, 2018, 361(6401): 469-474. doi: 10.1126/science.aat1168
    [89] ZHAO P Y, BAO J B, WANG X, et al. Deterministic processes dominate soil microbial community assembly in subalpine coniferous forests on the Loess Plateau[J]. PeerJ, 2019, 7: e6746. doi: 10.7717/peerj.6746
    [90] MELLO B L, ALESSI A M, MCQUEEN-MASON S, et al. Nutrient availability shapes the microbial community structure in sugarcane bagasse compost-derived consortia[J]. Scientific Reports, 2016, 6: 38781. doi: 10.1038/srep38781
    [91] ARMSTRONG A, VALVERDE A, RAMOND J B, et al. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input[J]. Scientific Reports, 2016, 6: 34434. doi: 10.1038/srep34434
    [92] MERINO N, ARONSON H S, BOJANOVA D P, et al. Living at the extremes: Extremophiles and the limits of life in a planetary context[J]. Frontiers in Microbiology, 2019, 10: 780. doi: 10.3389/fmicb.2019.00780
    [93] SCHMID A K, ALLERS T, DIRUGGIERO J. SnapShot: Microbial extremophiles[J]. Cell, 2020, 180(4): 818.
    [94] URITSKIY G, GETSIN S, MUNN A, et al. Halophilic microbial community compositional shift after a rare rainfall in the Atacama Desert[J]. The ISME Journal, 2019, 13(11): 2737-2749. doi: 10.1038/s41396-019-0468-y
    [95] URITSKIY G, MUNN A, DAILEY M, et al. Environmental factors driving spatial heterogeneity in desert halophile microbial communities[J]. Frontiers in Microbiology, 2020, 11: 578669. doi: 10.3389/fmicb.2020.578669
    [96] YANG X B, XU X M, HU D W. Succession mechanism of microbial community with high species diversity in nutrient-deficient environments with low-dose ionizing radiation[J]. Ecological Modelling, 2020, 435: 109270. doi: 10.1016/j.ecolmodel.2020.109270
    [97] NOVIKOVA N, DE BOEVER P, PODDUBKO S, et al. Survey of environmental biocontamination on board the International Space Station[J]. Research in Microbiology, 2006, 157(1): 5-12. doi: 10.1016/j.resmic.2005.07.010
    [98] LANG J M, COIL D A, NECHES R Y, et al. A microbial survey of the International Space Station (ISS)[J]. PeerJ, 2017, 5: e4029. doi: 10.7717/peerj.4029
    [99] YANG X B, LI S S, SONG G Y, et al. Microbial diversity formed and maintained through substrate feedback regulation and delayed responses induced by low-dose ionizing radiation[J]. Acta Astronautica, 2021, 188: 239-251. doi: 10.1016/j.actaastro.2021.07.027
    [100] YANG X B, SONG G Y, LIU H, et al. Microbial diversity formation and maintenance due to temporal niche differentiation caused by low-dose ionizing radiation in oligotrophic environments[J]. Life Sciences in Space Research, 2021, 31: 92-100. doi: 10.1016/j.lssr.2021.08.003
    [101] ROSADO H, DOYLE M, HINDS J, et al. Low-shear modelled microgravity alters expression of virulence determinants of Staphylococcus aureus[J]. Acta Astronautica, 2010, 66(3-4): 408-413. doi: 10.1016/j.actaastro.2009.06.007
    [102] BOUMA J E, PIERSON D L. Combined effects of simulated microgravity and multi-strain interactions on population dynamics of a constructed microbial community[R]. Warrendale: SAE International, 1998.
    [103] 李亚红, 陈冲, 武杰, 等. 紫外分光光度法测定海水中季铵盐的含量[J]. 理化检验-化学分册, 2010, 46(2): 136-137.

    LI Y H, CHEN C, WU J, et al. UV-spectrophotometric determination of quaternary ammonium salt in seawater[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2010, 46(2): 136-137(in Chinese).
    [104] 杨宏, 侯永青, 张兰涛. 微生物控制: 我国空间站面临的新挑战[J]. 载人航天, 2013, 19(2): 38-46.

    YANG H, HOU Y Q, ZHANG L T. Microbe control: A new challenge to faced by Chinese space station[J]. Manned Spaceflight, 2013, 19(2): 38-46(in Chinese).
    [105] 顾春英, 薛广波. 细菌对消毒剂的抗性研究进展[J]. 中华医院感染学杂志, 1997, 7(4): 62-66.

    GU C Y, XUE G B. Research progress of bacterial resistance to disinfectants[J]. Chinese Journal of Nosocomiology, 1997, 7(4): 62-66(in Chinese).
    [106] LOWBURY E J L. Skin disinfection[J]. Journal of Clinical Pathology, 1961, 14(1): 85. doi: 10.1136/jcp.14.1.85
    [107] ADAIR F W, GEFTIC S G, GELZER J. Resistance of pseudomonas to quaternary ammonium compounds. I. Growth in benzalkonium chloride solution[J]. Applied Microbiology, 1969, 18(3): 299-302. doi: 10.1128/am.18.3.299-302.1969
    [108] LI S, LIU X, CHEN L, et al. Cure or curse? Simulation indicates that microbes proliferate under disinfection measures in the space station[J/OL]. BiorXiv, 2024(2024-05-29)[2024-06-23]. https://doi.org/10.1101/2024.04.16.589799.
  • 加载中
图(1)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  85
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-22
  • 录用日期:  2022-09-09
  • 网络出版日期:  2022-11-02
  • 整期出版日期:  2024-09-27

目录

    /

    返回文章
    返回
    常见问答