留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GEMD与改进PCNN的红外与可见光图像融合

杨艳春 李小苗 党建武 王阳萍

杨艳春,李小苗,党建武,等. 基于GEMD与改进PCNN的红外与可见光图像融合[J]. 北京航空航天大学学报,2023,49(9):2317-2329 doi: 10.13700/j.bh.1001-5965.2022.0756
引用本文: 杨艳春,李小苗,党建武,等. 基于GEMD与改进PCNN的红外与可见光图像融合[J]. 北京航空航天大学学报,2023,49(9):2317-2329 doi: 10.13700/j.bh.1001-5965.2022.0756
YANG Y C,LI X M,DANG J W,et al. Infrared and visible image fusion based on GEMD and improved PCNN[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2317-2329 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0756
Citation: YANG Y C,LI X M,DANG J W,et al. Infrared and visible image fusion based on GEMD and improved PCNN[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2317-2329 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0756

基于GEMD与改进PCNN的红外与可见光图像融合

doi: 10.13700/j.bh.1001-5965.2022.0756
基金项目: 长江学者和创新团队发展计划资助(IRT_16R36);国家自然科学基金(62067006);甘肃省科技计划项目(18JR3RA104);甘肃省高等学校产业支撑计划项目(2020C-19);兰州市科技计划项目(2019-4-49);甘肃省教育厅青年博士基金(2022QB-067);甘肃省自然科学基金(23JRRA847, 21JR7RA300);兰州交通大学天佑创新团队(TY202003);兰州交通大学—天津大学联合创新基金(2021052)
详细信息
    通讯作者:

    E-mail:yangyanchun102@ sina.com

  • 中图分类号: TP391

Infrared and visible image fusion based on GEMD and improved PCNN

Funds: Program for Changjiang Scholars and Innovative ResearchTeam (IRT_16R36); National Natural Science Foundation of China (62067006); Gansu Provincial Science and Technology Plan Project (18JR3RA104); Gansu Province Higher Education Industry Support Program Project (2020C-19); Lanzhou Science and Technology Plan Project (2019-4-49); Gansu Provincial Department of Education: Youth Doctoral Fund Project (2022QB-067); Natural Science Foundation of Gansu Province (23JRRA847, 21JR7RA300); Tianyou Innovation Team of Lanzhou Jiaotong University (TY202003); Lanzhou Jiaotong University-Tianjin University Joint Innovation Fund Project (2021052)
More Information
  • 摘要:

    针对传统图像融合方法因分解工具的局限性使融合图像边缘出现伪影与亮度、对比度下降的问题,提出一种基于梯度保边多层级分解(GEMD)与改进脉冲耦合神经网络(PCNN)的红外与可见光图像融合方法。利用梯度双边滤波器(GBF)与梯度滤波器(GF)构造一种多层级分解模型,将源图像分解为3层特征图与1个基础层,且每层特征图有细、粗2个结构;根据各特征图所包含信息特点,分别采用在输入刺激中引入改进拉普拉斯算子来增强对图像中弱细节信息捕捉的PCNN、区域能量和对比度显著的融合规则进行子图融合,得到各子特征融合图像与基础层融合图像;将各子融合图像进行叠加,获得最终融合图像。实验结果表明:所提方法在视觉效果方面与定量评价方面均有所提高,提高了红外与可见光融合图像的亮度与对比度信息。

     

  • 图 1  脉冲耦合神经网络模型

    Figure 1.  PCNN model

    图 2  梯度双边滤波器性能分析图

    Figure 2.  Performance analysis diagram of GBF

    图 3  梯度保边多层级分解模型

    Figure 3.  Gradient edge-preserving multi-level decomposition model

    图 4  差图对比图

    Figure 4.  Difference map comparison map

    图 5  改进PCNN性能分析

    Figure 5.  Improved PCNN performance analysis

    图 6  本文方法结构图

    Figure 6.  Structure diagram of proposed method

    图 7  分解级数分析图

    Figure 7.  Decomposition series analysis diagram

    图 8  权重取值分析图

    Figure 8.  Weight value analysis diagram

    图 9  实验源图像

    Figure 9.  Experimental source images

    图 10  实验结果

    Figure 10.  Experimental results

    图 11  各指标折线图

    Figure 11.  Line chart of each indicator

    表  1  实验图像各评价指标值

    Table  1.   The evaluation index values of experimental images

    图像编号方法AGIEIDSDVIFFEIR/109
    img1
    GF2.96936.72614.456840.30690.54056.7065
    RGF4.24366.73336.215235.73040.55477.7050
    CNN4.00777.01416.219952.01270.681010.0100
    CSMCA3.48736.45595.134831.78150.52467.7815
    BRG3.81835.84446.029243.12890.58971.3966
    PIAF2.86066.53222.436531.99680.35467.2065
    本文方法5.31177.26628.998659.42900.771111.3470
    img2
    GF11.74497.342013.692859.62810.70387.8094
    RGF14.30847.478217.091362.93880.768710.0070
    CNN14.02077.370816.357768.02670.809310.1630
    CSMCA14.14327.536216.396457.28000.777710.0060
    BRG15.62317.435518.167265.56470.808212.3750
    PIAF12.64857.254616.621860.29840.754811.6570
    本文方法17.72007.467521.022475.69610.905716.5710
    img3
    GF5.00656.21065.630631.64520.47312.1302
    RGF6.53716.49857.559034.59770.55162.9668
    CNN6.32406.69257.230937.38680.61432.8205
    CSMCA5.90616.52716.621832.84670.53992.5836
    BRG6.31126.71506.963938.28920.62412.7484
    PIAF7.10076.77818.032038.37690.64713.4837
    本文方法7.56056.61618.452946.21190.71124.3446
    img4
    GF6.56747.13887.713241.80890.46473.0893
    RGF8.56207.193210.403943.81820.51984.6488
    CNN8.74457.420310.297751.70430.62754.8712
    CSMCA8.99497.411810.416546.17520.45125.3171
    BRG8.78517.432110.367648.12220.51355.0349
    PIAF8.43397.30569.700249.03880.58605.0457
    本文方法11.46767.632213.993363.17050.64507.9446
    img5
    GF1.81685.33172.280215.15460.23581.0312
    RGF2.84885.47403.547617.43400.32611.0513
    CNN2.55926.35553.236326.93460.26521.1193
    CSMCA2.22465.29832.736014.50690.15071.2474
    BRG2.80045.87123.301319.90490.11571.3562
    PIAF1.92535.72372.344016.53790.14971.0371
    本文方法3.30375.71634.177935.78290.34381.1655
    img6
    GF3.88287.18795.463645.74280.46406.2097
    RGF5.50717.22648.045845.54670.500010.2460
    CNN4.83187.11526.862551.00020.53789.1301
    CSMCA5.25787.21677.055046.52500.623311.9430
    BRG3.99367.42215.674750.33740.39257.1322
    PIAF3.77707.59175.319852.36200.24615.7678
    本文方法5.50977.63398.202754.62560.48469.5102
     注:加粗数据表示最优结果
    下载: 导出CSV
  • [1] 沈瑜, 陈小朋. 基于DLatLRR与VGG Net的红外与可见光图像融合[J]. 北京航空航天大学学报, 2021, 47(6): 1105-1114.

    SHEN Y, CHEN X P. Infrared and visible image fusion based on latent low-rank representation decomposition and VGG Net[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1105-1114(in Chinese).
    [2] LI G F, LIN Y J, QU X D. An infrared and visible image fusion method based on multi-scale transformation and norm optimization[J]. Information Fusion, 2021, 71: 109-129. doi: 10.1016/j.inffus.2021.02.008
    [3] 朱雯青, 汤心溢, 张瑞, 等. 基于边缘保持和注意力生成对抗网络的红外与可见光图像融合[J]. 红外与毫米波学报, 2021, 40(5): 696-708.

    ZHU W Q, TANG X Y, ZHANG R, et al. Infrared and visible image fusion based on edge-preserving and attention generative adversarial network[J]. Journal of Infrared and Millimeter Waves, 2021, 40(5): 696-708(in Chinese).
    [4] 刘佳妮, 金伟其, 李力, 等. 自适应参考图像的可见光与热红外彩色图像融合算法[J]. 光谱学与光谱分析, 2016, 36(12): 3907-3914.

    LIU J N, JIN W Q, LI L, et al. Visible and infrared thermal image fusion algorithm based on self-adaptive reference image[J]. Spectroscopy and Spectral Analysis, 2016, 36(12): 3907-3914(in Chinese).
    [5] LUO Y Y, HE K J, XU D, et al. Infrared and visible image fusion based on visibility enhancement and hybrid multiscale decomposition[J]. Optik, 2022, 258: 168914. doi: 10.1016/j.ijleo.2022.168914
    [6] GUO Z Y, YU X T, DU Q L. Infrared and visible image fusion based on saliency and fast guided filtering[J]. Infrared Physics & Technology, 2022, 123: 104178.
    [7] MA J Y, ZHOU Y. Infrared and visible image fusion via gradientlet filter[J]. Computer Vision and Image Understanding, 2020, 197-198: 103016. doi: 10.1016/j.cviu.2020.103016
    [8] 王满利, 王晓龙, 张长森. 基于动态范围压缩增强和NSST的红外与可见光图像融合算法[J]. 光子学报, 2022, 51(9): 277-291.

    WANG M L, WANG X L, ZHANG C S. Infrared and visible image fusion algorithm based on dynamic range compression enhancement and NSST[J]. Acta Photonica Sinica, 2022, 51(9): 277-291(in Chinese).
    [9] ZHOU Z Q, WANG B, LI S, et al. Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters[J]. Information Fusion, 2016, 30: 15-26. doi: 10.1016/j.inffus.2015.11.003
    [10] LI X S, ZHOU F Q, TAN H S, et al. Multimodal medical image fusion based on joint bilateral filter and local gradient energy[J]. Information Sciences, 2021, 569: 302-325. doi: 10.1016/j.ins.2021.04.052
    [11] HU J W, LI S T. The multiscale directional bilateral filter and its application to multisensor image fusion[J]. Information Fusion, 2012, 13(3): 196-206. doi: 10.1016/j.inffus.2011.01.002
    [12] 周志强, 汪渤, 李立广, 等. 基于双边与高斯滤波混合分解的图像融合方法[J]. 系统工程与电子技术, 2016, 38(1): 8-13.

    ZHOU Z Q, WANG B, LI L G, et al. Image fusion based on a hybrid decomposition via bilateral and Gaussian filters[J]. Systems Engineering and Electronics, 2016, 38(1): 8-13(in Chinese).
    [13] 刘峰, 沈同圣, 马新星. 交叉双边滤波和视觉权重信息的图像融合[J]. 仪器仪表学报, 2017, 38(4): 1005-1013. doi: 10.3969/j.issn.0254-3087.2017.04.027

    LIU F, SHEN T S, MA X X. Image fusion via cross bilateral filter and visual weight information[J]. Chinese Journal of Scientific Instrument, 2017, 38(4): 1005-1013(in Chinese). doi: 10.3969/j.issn.0254-3087.2017.04.027
    [14] 戴进墩, 刘亚东, 毛先胤, 等. 基于FDST和双通道PCNN的红外与可见光图像融合[J]. 红外与激光工程, 2019, 48(2): 67-74.

    DAI J D, LIU Y D, MAO X Y, et al. Infrared and visible image fusion based on FDST and dual-channel PCNN[J]. Infrared and Laser Engineering, 2019, 48(2): 67-74(in Chinese).
    [15] MA J L, ZHOU Z Q, WANG B, et al. Infrared and visible image fusion based on visual saliency map and weighted least square optimization[J]. Infrared Physics & Technology, 2017, 82: 8-17.
    [16] LIU Y, CHEN X, CHENG J A, et al. Infrared and visible image fusion with convolutional neural networks[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2018, 16(3): 1850018. doi: 10.1142/S0219691318500182
    [17] LIU Y, CHEN X, WARD R K, et al. Medical image fusion via convolutional sparsity based morphological component analysis[J]. IEEE Signal Processing Letters, 2019, 26(3): 485-489. doi: 10.1109/LSP.2019.2895749
    [18] ZHANG Y, ZHANG L J, BAI X Z, et al. Infrared and visual image fusion through infrared feature extraction and visual information preservation[J]. Infrared Physics & Technology, 2017, 83: 227-237.
    [19] TANG L F, YUAN J T, ZHANG H, et al. PIAFusion: A progressive infrared and visible image fusion network based on illumination aware[J]. Information Fusion, 2022, 83-84: 79-92. doi: 10.1016/j.inffus.2022.03.007
    [20] 张小利, 李雄飞, 李军. 融合图像质量评价指标的相关性分析及性能评估[J]. 自动化学报, 2014, 40(2): 306-315.

    ZHANG X L, LI X F, LI J. Validation and correlation analysis of metrics for evaluating performance of image fusion[J]. Acta Automatica Sinica, 2014, 40(2): 306-315(in Chinese).
    [21] 王晓文, 赵宗贵, 汤磊. 一种新的红外与可见光图像融合评价方法[J]. 系统工程与电子技术, 2012, 34(5): 871-875.

    WANG X W, ZHAO Z G, TANG L. Novel quality metric for infrared and visible image fusion[J]. Systems Engineering and Electronics, 2012, 34(5): 871-875(in Chinese).
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  2044
  • HTML全文浏览量:  118
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-02
  • 录用日期:  2023-01-02
  • 网络出版日期:  2023-02-06
  • 整期出版日期:  2023-10-01

目录

    /

    返回文章
    返回
    常见问答