留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变弯度柔性后缘机翼动响应减缓试验

张育鸣 戴玉婷 尉濡恺 胡雅婷 杨超

张育鸣,戴玉婷,尉濡恺,等. 变弯度柔性后缘机翼动响应减缓试验[J]. 北京航空航天大学学报,2024,50(10):3239-3249 doi: 10.13700/j.bh.1001-5965.2022.0761
引用本文: 张育鸣,戴玉婷,尉濡恺,等. 变弯度柔性后缘机翼动响应减缓试验[J]. 北京航空航天大学学报,2024,50(10):3239-3249 doi: 10.13700/j.bh.1001-5965.2022.0761
ZHANG Y M,DAI Y T,WEI R K,et al. Experiment on dynamic response alleviation of a wing with variable-camber flexible trailing edge[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3239-3249 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0761
Citation: ZHANG Y M,DAI Y T,WEI R K,et al. Experiment on dynamic response alleviation of a wing with variable-camber flexible trailing edge[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3239-3249 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0761

变弯度柔性后缘机翼动响应减缓试验

doi: 10.13700/j.bh.1001-5965.2022.0761
基金项目: 国家自然科学基金(11672018)
详细信息
    通讯作者:

    E-mail:yutingdai@buaa.edu.cn

  • 中图分类号: V211.5;TB553

Experiment on dynamic response alleviation of a wing with variable-camber flexible trailing edge

Funds: National Natural Science Foundation of China (11672018)
More Information
  • 摘要:

    变体飞行器能显著提升飞行器的气动性能,而变弯度柔性后缘是实现变体飞行器的重要方式之一。为探究柔性后缘动态偏转下机翼动响应特性及减缓效率 ,设计了一个变弯度柔性后缘机翼模型并开展了风洞试验。该机翼模型由承弯翼梁和6个3D打印的翼段组成。其中,2个翼段后缘分别设计2个变弯度柔性后缘舵面,这2个舵面分别用于动响应激励和动响应减缓控制。变弯度柔性后缘舵面由数字舵机、柔性索、波纹板结构和聚二甲基硅氧烷(PDMS)柔性蒙皮组成。对变弯度柔性后缘进行地面静态偏转试验和地面动态偏转试验测试,以研究后缘弯度变形规律及舵机动态时滞特性。在此基础上,在低速风洞试验中研究变弯度柔性后缘机翼动响应规律和基于变弯度柔性和闭环反馈控制的动响应减缓效率。风洞试验结果表明:机翼的翼尖加速度响应及翼根弯矩在频率为1.5~4 Hz时先增大后减小,并在接近机翼一弯频率时达到峰值。采用PID控制律和变弯度后缘进行闭环反馈控制后,在风速20 m/s、扰动频率2.2 Hz时翼尖加速度最大减缓效率达到70.18%,翼根弯矩的最大减缓效率为68.14%。此外,还提出了动响应减缓效率为正值的理论公式并分析了动响应减缓效率的影响机制和因素。

     

  • 图 1  柔性变弯度后缘机翼设计

    Figure 1.  Design of wing with variable-camber flexible trailing edge

    图 2  变弯度柔性后缘结构

    1. 螺纹孔;2. 螺纹孔;3. 卡槽;4. 卡槽;5. 闭室卡槽。

    Figure 2.  Structure of variable-camber flexible trailing edge

    图 3  变弯度柔性后缘结构设计及驱动形式

    Figure 3.  Structural design and driving form of variable-camber flexible trailing edge

    图 4  变弯度柔性后缘静变形定义

    Figure 4.  Definition of static deformation of variable-camber flexible trailing edge

    图 5  地面振动试验

    Figure 5.  Ground vibration test

    图 6  输入信号幅值与后缘静变形的关系

    Figure 6.  Relationship between amplitude of input signal and static deformation of trailing edge

    图 7  不同输入信号幅值下变弯度柔性后缘静态偏转

    Figure 7.  Static deflection of variable-camber flexible trailing edge at different amplitudes of input signal

    图 8  试验后缘变形拟合曲线与设计仿真结果对比(输入信号幅值20°)

    Figure 8.  Comparison between fitting curve of test trailing edge deformation and simulation results(amplitude of input signal of 20°)

    图 9  动态偏转试验位移输入输出

    Figure 9.  Displacement input and output of dynamic deflection test

    图 10  后缘偏转位移信号伯德图

    Figure 10.  Bode diagram of displacement signal of trailing edge deflection

    图 11  风洞试验装置

    Figure 11.  Wind tunnel test equipment

    图 12  风速为20 m/s、后缘偏转频率为2.2 Hz工况

    Figure 12.  Wing tip acceleration response at wind speed of 20 m/s and trailing edge deflection frequency of 2.2 Hz

    图 13  滤波前后的对比

    Figure 13.  Comparison before and after filtering

    图 14  动响应试验翼尖加速度随频率变化关系

    Figure 14.  Relationship between wing tip acceleration and frequency in dynamic response test

    图 15  动响应试验翼根弯矩随频率变化关系

    Figure 15.  Relationship between wing root bending moment with frequency in dynamic response test

    图 16  PID控制框图

    Figure 16.  PID control block diagram

    图 17  风速为20 m/s,后缘偏转频率为2 Hz时动响应减缓

    Figure 17.  Dynamic response alleviation at 20 m/s wind speed and 2.2 Hz trailing edge deflection frequency

    图 18  舵面开启前后动响应对比

    Figure 18.  Comparison of dynamic responses before and after rudder surface opening

    图 19  翼尖加速度减缓效率

    Figure 19.  Wing tip acceleration alleviation efficiency

    图 20  翼根弯矩减缓效率

    Figure 20.  Wing root bending moment alleviation efficiency

    图 21  控制舵面偏转位移

    Figure 21.  Deflection displacement of rudder surface

    表  1  地面试验测量的前3阶模态频率

    Table  1.   First three modal frequencies measured by ground tests

    模态名称 频率/Hz
    面外一弯 2.3
    面外二弯 14.9
    一扭 24.5
    下载: 导出CSV

    表  2  2.6 Hz动响应减缓效率分析

    Table  2.   Dynamic response alleviation efficiency at 2.6 Hz

    风速/(m·s−1 ${\beta _0}$/(°) ${\beta _1}$/(°) $\cos ({\varphi _0} - {\varphi _1})$ ${F_1}/2{F_0}$
    12 −151 −33 0.469 0.465
    16 −198 −33 0.967 1.186
    18 −113 −33 −0.171 1.457
    20 −94 −33 −0.481 1.705
    下载: 导出CSV

    表  3  2.8 Hz动响应减缓效率分析

    Table  3.   Dynamic response alleviation efficiency at 2.8 Hz

    风速/(m·s−1 ${\beta _0}$/(°) ${\beta _1}$/(°) $\cos ({\varphi _0} - {\varphi _1})$ ${F_1}/2{F_0}$
    12 −205 −67 0.758 0.426
    16 −277 −67 0.853 1.109
    18 −288 −67 0.747 1.299
    20 −318 −67 0.301 1.414
    下载: 导出CSV
  • [1] MCGOWAN A M R, VICROY D D, BUSAN R C, et al. Perspectives on Highly adaptive or morphing aircraft[C]//NATO RTO AVT-168 Symposium. Lisbon: NTRS, 2009: RTO-MP-AVT-168.
    [2] MAJID T, JO B W. Comparative aerodynamic performance analysis of camber morphing and conventional airfoils[J]. Applied Sciences, 2021, 11(22): 10663. doi: 10.3390/app112210663
    [3] 祝连庆, 孙广开, 李红, 等. 智能柔性变形机翼技术的应用与发展[J]. 机械工程学报, 2018, 54(14): 28-42.

    ZHU L Q, SUN G K, LI H, et al. Intelligent and flexible morphing wing technology: A review[J]. Journal of Mechanical Engineering, 2018, 54(14): 28-42 (in Chinese).
    [4] SOFLA A Y N, MEGUID S A, TAN K T, et al. Shape morphing of aircraft wing: Status and challenges[J]. Materials & Design, 2010, 31(3): 1284-1292.
    [5] THILL C, ETCHES J, BOND I, et al. Morphing skins[J]. The Aeronautical Journal, 2008, 112(1129): 117-139. doi: 10.1017/S0001924000002062
    [6] BARBARINO S, BILGEN O, AJAJ R M, et al. A review of morphing aircraft[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(9): 823-877. doi: 10.1177/1045389X11414084
    [7] 冷劲松, 孙健, 刘彦菊. 智能材料和结构在变体飞行器上的应用现状与前景展望[J]. 航空学报, 2014, 35(1): 29-45.

    LENG J S, SUN J, LIU Y J. Application status and future prospect of smart materials and structures in morphing aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 29-45 (in Chinese).
    [8] ISMAIL N I, ZULKIFLI A H, ABDULLAH M Z, et al. Optimization of aerodynamic efficiency for twist morphing MAV wing[J]. Chinese Journal of Aeronautics, 2014, 27(3): 475-487. doi: 10.1016/j.cja.2014.04.017
    [9] HUANG R, QIU Z P. Transient aeroelastic responses and flutter analysis of a variable-span wing during the morphing process[J]. Chinese Journal of Aeronautics, 2013, 26(6): 1430-1438. doi: 10.1016/j.cja.2013.07.047
    [10] KOREANSCHI A, SUGAR GABOR O, ACOTTO J, et al. Optimization and design of an aircraft’s morphing wing-tip demonstrator for drag reduction at low speed, Part I—Aerodynamic optimization using genetic, bee colony and gradient descent algorithms[J]. Chinese Journal of Aeronautics, 2017, 30(1): 149-163. doi: 10.1016/j.cja.2016.12.013
    [11] KOREANSCHI A, GABOR O S, ACOTTO J, et al. Optimization and design of an aircraft’s morphing wing-tip demonstrator for drag reduction at low speeds, Part II - Experimental validation using Infra-Red transition measurement from Wind Tunnel tests[J]. Chinese Journal of Aeronautics, 2017, 30(1): 164-174. doi: 10.1016/j.cja.2016.12.018
    [12] LI D C, LIU Q C, WU Y N, et al. Design and analysis of a morphing drag rudder on the aerodynamics, structural deformation, and the required actuating moment[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(6): 1038-1049. doi: 10.1177/1045389X17730910
    [13] AJAJ R M, PARANCHEERIVILAKKATHIL M S, AMOOZGAR M, et al. Recent developments in the aeroelasticity of morphing aircraft[J]. Progress in Aerospace Sciences, 2021, 120: 100682. doi: 10.1016/j.paerosci.2020.100682
    [14] MOLINARI G, QUACK M, ARRIETA A F, et al. Design, realization and structural testing of a compliant adaptable wing[J]. Smart Material Structures, 2015, 24(10): 105027. doi: 10.1088/0964-1726/24/10/105027
    [15] TAKAHASHI H, YOKOZEKI T, HIRANO Y. Development of variable camber wing with morphing leading and trailing sections using corrugated structures[J]. Journal of Intelligent Material Systems and Structures, 2016, 27(20): 2827-2836. doi: 10.1177/1045389X16642298
    [16] WOODS B K S, FINCHAM J H S, FRISWELL M I. Aerodynamic modelling of the fish bone active camber morphing concept[C]//Proceedings of the RAeS Applied Aerodynamics Conference. Bristol: The Aeromatical Journal, 2014: 2224.
    [17] ZHAO S W, LI D C, ZHOU J, et al. Numerical and experimental study of a flexible trailing edge driving by pneumatic muscle actuators[J]. Actuators, 2021, 10(7): 142. doi: 10.3390/act10070142
    [18] 雷朝辉, 宋晨, 张桢锴, 等. 后缘柔性可变形翼肋模块设计分析与试验[J]. 工程与试验, 2020, 60(4): 16-22.

    LEI C H, SONG C, ZHANG Z K, et al. Design, analysis and test of morphing trailing edge flexible rib[J]. Engineering & Test, 2020, 60(4): 16-22 (in Chinese).
    [19] PECORA R, AMOROSO F, SICIM M S. Design of a morphing test-article for large-scale, high-speed wind tunnel tests of an adaptive wing flap[C]//Active and Passive Smart Structures and Integrated Systems XV. San Diego: SPIE, 2021, 11588: 7-15.
    [20] RIVERO A E, FOURNIER S, MANOLESOS M, et al. Wind tunnel comparison of flapped and FishBAC camber variation for lift control[C]// Proceedings of the AIAA Scitech 2020 Forum. Reston: AIAA, 2020: 1300.
    [21] VARTIO E, SHAW E, VETTER T. Gust load alleviation flight control system design for a SensorCraft vehicle[C]// Proceedings of the 26th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2008: 7192.
    [22] WONG A, BIL C, MARINO M. Design and aerodynamic performance of a FishBAC morphing wing[C]// Proceedings of the AIAA SCITECH 2022 Forum. Reston: AIAA, 2022: 1298.
    [23] LU C. Development of variable camber continuous trailing edge flap for performance adaptive aeroelastic wing[C]// Multidisciplinary Design Analysis and Optimization of Aerospace Composites. Piscataway: IEEE Press, 2020: 67-122.
    [24] NGUYEN N T, CRAMER N B, HASHEMI K E, et al. Progress on gust load alleviation wind tunnel experiment and aeroservoelastic model validation for a flexible wing with variable camber continuous trailing edge flap system[C]// Proceedings of the AIAA Scitech 2020 Forum. Reston: AIAA, 2020: 0214.
  • 加载中
图(21) / 表(3)
计量
  • 文章访问数:  237
  • HTML全文浏览量:  91
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-07
  • 录用日期:  2022-11-28
  • 网络出版日期:  2022-12-28
  • 整期出版日期:  2024-10-31

目录

    /

    返回文章
    返回
    常见问答