留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

施工工艺对复合材料蒙皮电气性能影响分析

杨占刚 柯中澍 杨旭伟 包兴旺

杨占刚,柯中澍,杨旭伟,等. 施工工艺对复合材料蒙皮电气性能影响分析[J]. 北京航空航天大学学报,2024,50(10):3013-3020 doi: 10.13700/j.bh.1001-5965.2022.0763
引用本文: 杨占刚,柯中澍,杨旭伟,等. 施工工艺对复合材料蒙皮电气性能影响分析[J]. 北京航空航天大学学报,2024,50(10):3013-3020 doi: 10.13700/j.bh.1001-5965.2022.0763
YANG Z G,KE Z S,YANG X W,et al. Analysis of effect of construction process on electrical properties of composite skins[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3013-3020 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0763
Citation: YANG Z G,KE Z S,YANG X W,et al. Analysis of effect of construction process on electrical properties of composite skins[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3013-3020 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0763

施工工艺对复合材料蒙皮电气性能影响分析

doi: 10.13700/j.bh.1001-5965.2022.0763
基金项目: 航空科学基金(20182667010);国家商用飞机制造工程技术研究中心创新基金(COMAC-SFGS-2021-609)
详细信息
    通讯作者:

    E-mail:yangcauc@163.com

  • 中图分类号: V261.97

Analysis of effect of construction process on electrical properties of composite skins

Funds: Aeronautical Science Foundation of China (20182667010); Fund of National Engineering and Research Center for Commercial Aircraft Manufacturing (COMAC-SFGS-2021-609)
More Information
  • 摘要:

    新型商用飞机蒙皮中复合材料的占比越来越高,然而较差的导电性使其需要额外的导电结构实现电流在蒙皮内的流通。为提高蒙皮导电能力,降低复合材料与导电结构的搭接对电流通路的影响,基于各组成结构的电气特性对蒙皮结构进行建模,并利用解析方法分析搭接时可能产生影响的施工工艺。针对蒙皮不同部位各自处理工艺带来的接触面间的电流与整体结构阻抗的变化,分析各结构在装配过程中的施工工艺对飞机蒙皮搭接结构电气特性的影响情况。理论分析与仿真计算结果表明:正确的施工工艺处理方法,尤其是对蒙皮表面树脂与金属连接件氧化膜恰当的处理程度,能够有效减小整体结构阻抗对蒙皮电气性能的影响,并能够为面向现场的施工提供一定的操作建议。

     

  • 图 1  蒙皮搭接结构示意图

    1. 螺栓;2. 凹型垫圈;3. 树脂;4. 延展金属箔;5. CFRP;6. 金属氧化膜;7. 金属连接件。

    Figure 1.  Schematic of skin bonding structure

    图 2  考虑氧化膜的接触界面示意图

    Figure 2.  Schematic of contact surface with oxide film

    图 3  导电溶液处理后接触面示意图

    Figure 3.  Schematic of contact surface after using conductive solution

    图 4  螺栓附近电流流向

    Figure 4.  Current flow direction near bolts

    图 5  树脂表面的锪窝处理

    Figure 5.  Countersink treatment of resin surface

    图 6  树脂-延展金属铜箔接触面电流密度分布

    Figure 6.  Current density distribution on resin-extended meta copper foil contact surface

    图 7  延展金属铜箔上表面电流密度变化趋势

    Figure 7.  Variation trend of current density on upper surface of extended metal copper foil

    图 8  锪窝处理半径对结构阻抗的影响

    Figure 8.  Influence of countersink radius on structural impedance

    图 9  碱洗氧化膜对结构阻抗的影响

    Figure 9.  Influence of oxide film after alkali wash on structural impedance

    图 10  阿洛丁处理程度对结构阻抗的影响

    Figure 10.  Influence of alodine treatment on structural impedance

    图 11  氧化膜接触面电流密度分布

    Figure 11.  Current density distribution on contact surface of metal oxide film

    图 12  阿洛丁处理对氧化膜表面电流密度的影响

    Figure 12.  Influence of alodine treatment on surface current density of oxide film

    表  1  螺栓与凹形垫圈的尺寸

    Table  1.   Dimensions of bolts and concave washers mm

    结构 参数
    沉头螺栓总长度 18
    沉头螺栓螺杆直径 6.4
    沉头螺栓头直径 9
    沉头螺栓头厚度 0.5
    凹形垫圈高度 2.2
    凹形垫圈内径 6.45
    凹形垫圈外径 19
    凹形垫圈厚度 0.4
    下载: 导出CSV

    表  2  各结构件材质及电磁参数

    Table  2.   Material and electromagnetic parameters of each component

    部件名称 材质 电导率/(S·m−1
    延展金属箔 5.998×107
    CFRP 碳纤维复合材料 1.5×104
    金属氧化膜 氧化铝 0.01
    金属连接件 3.03×107
    沉头螺栓 4.032×106
    凹形垫圈 2.38×106
    下载: 导出CSV
  • [1] 刘国春, 郭荣辉, 秦文峰. 民用飞机复合材料结构制造与维修[M]. 北京: 清华大学出版社, 2020: 10-11.

    LIU G C, GUO R H, QIN W F. Manufacture and maintenance of composite structure of civil aircraft[M]. Beijing: Tsinghua University Press, 2020: 10-11(in Chinese).
    [2] GOLEANU A, DUNAND M, FREYCON A, et al. Search for quasi-optimal current return paths in a composite environment[C]//Proceedings of the 10th International Symposium on Electromagnetic Compatibility. Piscataway: IEEE Press, 2011: 254-259.
    [3] JONES C E, SZTYKIEL M, PEÑA-ALZOLA R, et al. Grounding topologies for resilient, integrated composite electrical power systems for future aircraft applications[C]//Proceedings of the AIAA/IEEE Electric Aircraft Technologies Symposium. Piscataway: IEEE Press, 2019: 1-15.
    [4] US Air Force. Military specification, bonding, electrical and lighting protection for aerospace systems: MIL-STD-464A[S]. Washington, D. C. : US Department of Defense, 2002.
    [5] GOLEANU A L, DUNAND M, GUICHON J M, et al. Towards the conception and optimisation of the current return path in a composite aircraft[C]//Proceedings of the IEEE International Systems Conference. Piscataway: IEEE Press, 2010: 466-471.
    [6] 张宇. 复合材料飞机的电流回路接地技术研究[J]. 航空科学技术, 2011, 22(6): 27-30. doi: 10.3969/j.issn.1007-5453.2011.06.009

    ZHANG Y. Research of current return path of composite aircraft[J]. Aeronautical Science & Technology, 2011, 22(6): 27-30(in Chinese). doi: 10.3969/j.issn.1007-5453.2011.06.009
    [7] JONES C E, NORMAN P J, GALLOWAY S J, et al. Electrical model of carbon fibre reinforced polymers for the development of electrical protection systems for more-electric aircraft[C]//Proceedings of the 18th European Conference on Power Electronics and Applications. Piscataway: IEEE Press, 2016: 1-10.
    [8] 易健宏, 杨平, 沈韬. 碳纳米管增强金属基复合材料电学性能研究进展[J]. 复合材料学报, 2016, 33(4): 689-703.

    YI J H, YANG P, SHEN T. Research progress of electrical properties for carbon nanotubes reinforced metal matrix composites[J]. Acta Materiae Compositae Sinica, 2016, 33(4): 689-703(in Chinese).
    [9] 郭永超, 高成, 宋双, 等. 不同激励源作用下的碳纤维复合材料的导电性能研究[C]//第22届全国电磁兼容学术会议. 北京: 人民邮电出版社, 2012: 62-66.

    GUO Y C, GAO C, SONG S, et al. Study of electric properties of carbon fiber composite materials using different excitation[C]//Proceedings of the 22nd National Electromagnetic Compatibility Academic Conference. Beijing: Posts & Telecom Press, 2012: 62-66(in Chinese).
    [10] LIN Z, SUN X, LIU S, et al. Effect of SnO2 particle size on properties of Ag-SnO2 electrical contact materials prepared by the reductive precipitation method[J]. Advanced Materials Research, 2014, 936: 459-463. doi: 10.4028/www.scientific.net/AMR.936.459
    [11] WATTS P C P, HSU W K, BARNES A, et al. High permittivity from defective multiwalled carbon nanotubes in the X-band[J]. Advanced Materials, 2003, 15(7-8): 600-603.
    [12] CHEN P W, CHUNG D D L. Concrete as a new strain/stress sensor[J]. Composites Part B: Engineering, 1996, 27(1): 11-23.
    [13] CLINGERMAN M L, WEBER E H, KING J A, et al. Development of an additive equation for predicting the electrical conductivity of carbon-filled composites[J]. Journal of Applied Polymer Science, 2003, 88(9): 2280-2299. doi: 10.1002/app.11938
    [14] 张强, 蔡旭龙, 王建宏. 触点制造过程表面膜电阻对接触电阻的影响[J]. 机电元件, 2014, 34(2): 43-47. doi: 10.3969/j.issn.1000-6133.2014.02.009

    ZHANG Q, CAI X L, WANG J H. Influence of surface film resistance on contact resistance in contact manufacturing process[J]. Electromechanical Components, 2014, 34(2): 43-47 (in Chinese). doi: 10.3969/j.issn.1000-6133.2014.02.009
    [15] MALINOWSKI P H, WANDOWSKI T, OSTACHOWICZ W M. Characterisation of CFRP adhesive bonds by electromechanical impedance[C]//Proceedings of the Health Monitoring of Structural and Biological Systems. Bellingham: SPIE, 2014: 906415.
    [16] MALINOWSKI P H, OSTACHOWICZ W M, BRUNE K, et al. Study of electromechanical impedance changes caused by modifications of CFRP adhesive bonds[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(10): 1592-1600.
    [17] 周猛. CFRP锪窝制孔尺寸及误差对连接结构疲劳性能的影响[D]. 天津: 天津大学, 2018: 4-5.

    ZHOU M. CFRP countersink hole size and error influence of fatigue performance on the connection structure[D]. Tianjin: Tianjin University, 2018: 4-5(in Chinese).
    [18] 王力强, 吕玲, 胡彦卿, 等. 阿洛丁1200S处理工艺参数对铝合金耐盐雾腐蚀性能的影响[J]. 腐蚀与防护, 2019, 40(12): 912-915. doi: 10.11973/fsyfh-201912009

    WANG L Q, LÜ L, HU Y Q, et al. Effects of processing parameters in alodine 1200S treatment on salt spray corrosion resistance of Al alloy[J]. Corrosion & Protection, 2019, 40(12): 912-915(in Chinese). doi: 10.11973/fsyfh-201912009
    [19] 刘建英, 隋政, 张起浩, 等. 复合材料飞机接地回流网络建模与阻抗分析[J]. 北京航空航天大学学报, 2021, 47(5): 885-893.

    LIU J Y, SUI Z, ZHANG Q H, et al. Modeling and impedance analysis of composite material aircraft grounded return network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 885-893(in Chinese).
    [20] 杨占刚, 隋政, 张起浩, 等. 复合材料飞机接地回流网络网内压降分析[J]. 航空学报, 2022, 43(1): 324859. doi: 10.7527/j.issn.1000-6893.2022.1.hkxb202201037

    YANG Z G, SUI Z, ZHANG Q H, et al. Voltage drop in composite aircraft grounding and current return network[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 324859(in Chinese). doi: 10.7527/j.issn.1000-6893.2022.1.hkxb202201037
    [21] HARRINGTON R F. Field computation by moment methods[M]. New York: Macmillan, 1968.
    [22] 周琳, 黄江涛, 高正红. 基于离散伴随方程的三维雷达散射截面几何敏感度计算[J]. 航空学报, 2020, 41(5): 623361.

    ZHOU L, HUANG J T, GAO Z H. Three dimensional radar cross section geometric sensitivity calculation based on discrete adjoint equation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623361(in Chinese).
    [23] BANDINELLI M, MORI A, GALGANI G, et al. A surface PEEC formulation for high-fidelity analysis of the current return networks in composite aircrafts[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(5): 1027-1036. doi: 10.1109/TEMC.2015.2422672
    [24] 裴春雨. 碳纳米纤维/环氧树脂基复合材料自感知性能[D]. 大连: 大连理工大学, 2014: 12-14.

    PEI C Y. Self-sensing properties of carbon nanofiber/epoxy resin matrix composites materials[D]. Dalian: Dalian University of Technology, 2014: 12-14(in Chinese).
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  23
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-07
  • 录用日期:  2022-10-07
  • 网络出版日期:  2023-01-10
  • 整期出版日期:  2024-10-31

目录

    /

    返回文章
    返回
    常见问答