留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀热流影响超临界二氧化碳流动换热数值研究

代威 石申舟 付衍琛 左洋

代威,石申舟,付衍琛,等. 非均匀热流影响超临界二氧化碳流动换热数值研究[J]. 北京航空航天大学学报,2024,50(10):3074-3083 doi: 10.13700/j.bh.1001-5965.2022.0769
引用本文: 代威,石申舟,付衍琛,等. 非均匀热流影响超临界二氧化碳流动换热数值研究[J]. 北京航空航天大学学报,2024,50(10):3074-3083 doi: 10.13700/j.bh.1001-5965.2022.0769
DAI W,SHI S Z,FU Y C,et al. Numerical study on flow and heat transfer of supercritical carbon dioxide under non-uniform heat flux influences[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3074-3083 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0769
Citation: DAI W,SHI S Z,FU Y C,et al. Numerical study on flow and heat transfer of supercritical carbon dioxide under non-uniform heat flux influences[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3074-3083 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0769

非均匀热流影响超临界二氧化碳流动换热数值研究

doi: 10.13700/j.bh.1001-5965.2022.0769
基金项目: 国家自然科学基金(51906009)
详细信息
    通讯作者:

    E-mail:yanchenfu@buaa.edu.cn

  • 中图分类号: V231.1

Numerical study on flow and heat transfer of supercritical carbon dioxide under non-uniform heat flux influences

Funds: National Natural Science Foundation of China (51906009)
More Information
  • 摘要:

    针对部分极端工况下表面热流密度高、分布不均匀的特点,采用数值计算分析方法研究非均匀热流对超临界二氧化碳流动与换热特性的影响。针对内径为4 mm水平圆管内超临界压力二氧化碳的流动传热,依次在相同总热流不同变化斜率、不同总热流相同变化斜率的2组线性非均匀热流工况下进行数值模拟,得到线性非均匀热流工况下热物性分布、浮升力影响对流换热特性规律。仿真结果表明:相较于均匀热流,非均匀热流工况下加热段入口处附近上壁面传热恶化更严重,线性非均匀热流分布下该处管壁温度可达均匀热流工况下的1.85倍;对给定的实际表面热流边界条件下的超临界二氧化碳流动换热进行数值仿真,加热段入口处上壁面最大温度达出口温度的3.41倍,改变流动方向后这一比值降低到1.50,据此对采取超临界二氧化碳为工质的相关冷却方案给出了建议。

     

  • 图 1  内径为4 mm的水平圆管几何模型示意图[25]

    Figure 1.  Schematic diagram of geometric model of horizontal circular tube with a diameter of 4 mm [25]

    图 2  压力为8 MPa时热物性随温度分布

    Figure 2.  Variation of thermophysical properties with temperature under pressure is 8 MPa

    图 3  网格截面划分

    Figure 3.  Meshing in cross-section

    图 4  壁温仿真结果对比

    Figure 4.  Comparison of simulation results of tube wall temperature

    图 5  对流换热系数结果对比

    Figure 5.  Comparison of convective heat transfer coefficients

    图 6  验证网格无关性的加热段壁温分布

    Figure 6.  Tube wall temperature distribution in heating section for grid independence verification

    图 7  验证网格无关性的对流换热系数

    Figure 7.  Convective heat transfer coefficient verification for grid independence verification

    图 8  工况1~工况5加热段热流密度分布

    Figure 8.  Heat flux density distribution in heating section in condition 1~condition 5

    图 9  工况1~工况5流向温度分布

    Figure 9.  Temperature distribution along flow direction in condition 1~condition 5

    图 10  工况1~工况5温度沿程分布

    Figure 10.  Axial temperature distribution in condition 1~condition 5

    图 11  工况1~工况5对流换热系数沿程分布

    Figure 11.  Axial convective heat transfer coefficient distribution in condition 1~condition 5

    图 12  对流换热系数随主流温度变化趋势

    Figure 12.  Variation of convective heat transfer coefficient with main stream temperature

    图 13  $ Bu $随主流温度变化趋势

    Figure 13.  Variation of $ Bu $ with main stream temperature

    图 14  工况3及拓展工况热流沿程分布

    Figure 14.  Axial heat flux distribution in condition 3 and its expanded conditions

    图 15  工况3及拓展工况流向温度分布

    Figure 15.  Temperature distribution in condition 3 and its expanded conditions

    图 16  工况3及拓展工况温度

    Figure 16.  Temperature of condition 3 and its expanded conditions

    图 17  工况3及拓展工况对流换热系数

    Figure 17.  Convective heat transfer coefficient of condition 3 and its expanded conditions

    图 18  工况3及拓展工况$Nu$随$Re$变化趋势

    Figure 18.  Variation of $Nu$ with $Re$ in condition 3 and its expanded conditions

    图 19  工况3及拓展工况$ Bu $分布

    Figure 19.  Distribution of $ Bu $ in condition 3 and its expanded conditions

    图 20  实际非均匀热流密度分布

    Figure 20.  Distribution of actual non-uniform heat flux density

    图 21  实际非均匀热流下温度场分布

    Figure 21.  Temperature distribution under actual non-uniform heat flux

    图 22  实际非均匀热流温度曲线

    Figure 22.  Temperature curve of actual non-uniform heat flux

    图 23  实际非均匀热流对流换热系数曲线

    Figure 23.  Convective heat transfer coefficient curve of actual non-uniform heat flux

    图 24  实际非均匀热流$Nu$随$Re$变化趋势

    Figure 24.  Variation of $Nu$ with $Re$ under actual non-uniform heat flux

    图 25  实际非均匀热流边界沿程$ Bu $分布

    Figure 25.  Distribution of $ Bu $ under actual non-uniform heat flux boundary

    图 26  反向热流仿真温度云图

    Figure 26.  Simulated temperature cloud image of reverse heat flux

    图 27  对流换热系数对比

    Figure 27.  Comparison of convective heat transfer coefficients

    表  1  非均匀度研究工况设置

    Table  1.   Conditions setting on non-uniformity

    工况编号 q沿程分布/(kW·m−2) q平均值/(kW·m−2)
    1 q=32.5 32.5
    2 q=−8.125x+40.625 32.5
    3 q=−16.25x+48.75 32.5
    4 q=−24.375x+56.875 32.5
    5 q=−32.5x+65 32.5
    下载: 导出CSV

    表  2  热流密度平均值工况设置

    Table  2.   Condition setting on average value of heat flux density

    工况编号 q沿程分布/(kW·m−2) q平均值/(kW·m−2)
    3 q=−16.25x+48.75 32.5
    3-1 q=−16.25x+56.875 40.625
    3-2 q=−16.25x+65 48.75
    3-3 q=−16.25x+73.125 56.875
    3-4 q=−16.25x+81.25 65
    下载: 导出CSV
  • [1] ESKANDARI MANJILI F, CHERAGHI M. Performance of a new two-stage transcritical CO2 refrigeration cycle with two ejectors[J]. Applied Thermal Engineering, 2019, 156: 402-409. doi: 10.1016/j.applthermaleng.2019.03.083
    [2] TSAI W C, WANG Y D. Progress of supercritical fluid technology in polymerization and its applications in biomedical engineering[J]. Progress in Polymer Science, 2019, 98: 101161. doi: 10.1016/j.progpolymsci.2019.101161
    [3] LIU Y H, LI Q L, DUAN X L, et al. Thermodynamic analysis of a modified system for a 1000 MW single reheat ultra-supercritical thermal power plant[J]. Energy, 2018, 145: 25-37. doi: 10.1016/j.energy.2017.12.060
    [4] FEWSTER J. Mixed forced and free convective heat transfer to supercritical pressure fluids flowing in vertical pipes[M]. Manchester: The University of Manchester Press, 1976: 11-19.
    [5] BRINGER R P, SMITH J M. Heat transfer in the critical region[J]. AIChE Journal, 1957, 3(1): 49-55. doi: 10.1002/aic.690030110
    [6] BOYKO L D, KRUZHILIN G N. Heat transfer and hydraulic resistance during condensation of steam in a horizontal tube and in a bundle of tubes[J]. International Journal of Heat and Mass Transfer, 1967, 10(3): 361-373. doi: 10.1016/0017-9310(67)90152-4
    [7] ADEBIYI G A, HALL W B. Experimental investigation of heat transfer to supercritical pressure carbon dioxide in a horizontal pipe[J]. International Journal of Heat and Mass Transfer, 1976, 19(7): 715-720. doi: 10.1016/0017-9310(76)90123-X
    [8] PIDAPARTI S R, MCFARLAND J A, MIKHAEIL M M, et al. Investigation of buoyancy effects on heat transfer characteristics of supercritical carbon dioxide in heating mode[J]. Journal of Nuclear Engineering and Radiation Science, 2015, 1(3): 031001. doi: 10.1115/1.4029592
    [9] CHU X, LAURIEN E. Investigation of convective heat transfer to supercritical carbon dioxide with direct numerical simulation[C]//Proceedings of the High Performance Computing in Science and Engineering. Berlin: Springer, 2016: 315-331.
    [10] 淮秀兰, KOYAMA S. 微通道内超临界二氧化碳的压降与传热特性[J]. 工程热物理学报, 2004, 25(5): 843-845.

    HUAI X L, KOYAMA S. Heat transfer and pressure drop of supercritical carbon dioxide in multi-port channels[J]. Journal of Engineering Thermophysics, 2004, 25(5): 843-845 (in Chinese).
    [11] PALKO D, ANGLART H. Theoretical and numerical study of heat transfer deterioration in high performance light water reactor[J]. Science and Technology of Nuclear Installations, 2008, 2008: 405072.
    [12] 王军辉, 郭鹏程, 颜建国, 等. 水平小圆管内超临界二氧化碳对流传热特性的试验研究[J]. 西安理工大学学报, 2018, 34(3): 272-277.

    WANG J H, GUO P C, YAN J G, et al. Experimental studies on convection heat transfer of supercritical carbon dioxide in a horizontal circular mini-tube[J]. Journal of Xi’an University of Technology, 2018, 34(3): 272-277 (in Chinese).
    [13] 吴超, 李会雄, 张谦. 超临界流体水平管换热特性可视化研究[J]. 工程热物理学报, 2014, 35(5): 897-901.

    WU C, LI H X, ZHANG Q. Visualization experimental investigations of the heat transfer characteristics in a horizontal tube under supercritical pressure[J]. Journal of Engineering Thermophysics, 2014, 35(5): 897-901 (in Chinese).
    [14] KAO M T, LEE M, FERNG Y M, et al. Heat transfer deterioration in a supercritical water channel[J]. Nuclear Engineering and Design, 2010, 240(10): 3321-3328. doi: 10.1016/j.nucengdes.2010.06.028
    [15] JACKSON J D. Fluid flow and convective heat transfer to fluids at supercritical pressure[J]. Nuclear Engineering and Design, 2013, 264: 24-40. doi: 10.1016/j.nucengdes.2012.09.040
    [16] BAE Y Y, KIM H Y, KANG D J. Forced and mixed convection heat transfer to supercritical CO2 vertically flowing in a uniformly-heated circular tube[J]. Experimental Thermal and Fluid Science, 2010, 34(8): 1295-1308. doi: 10.1016/j.expthermflusci.2010.06.001
    [17] KIM D E, KIM M H. Experimental investigation of heat transfer in vertical upward and downward supercritical CO2 flow in a circular tube[J]. International Journal of Heat and Fluid Flow, 2011, 32(1): 176-191. doi: 10.1016/j.ijheatfluidflow.2010.09.001
    [18] KIM D E, KIM M H. Two layer heat transfer model for supercritical fluid flow in a vertical tube[J]. The Journal of Supercritical Fluids, 2011, 58(1): 15-25. doi: 10.1016/j.supflu.2011.04.014
    [19] JIANG P X, ZHANG Y, SHI R F. Experimental and numerical investigation of convection heat transfer of CO2 at super-critical pressures in a vertical mini tube[C]//Proceedings of the ASME 4th International Conference on Nanochannels, Microchannels, and Minichannels. New York: ASMEDC, 2006: 583-590.
    [20] JIANG P X, SHI R F, XU Y J, et al. Experimental investigation of flow resistance and convection heat transfer of CO2 at supercritical pressures in a vertical porous tube[J]. The Journal of Supercritical Fluids, 2006, 38(3): 339-346. doi: 10.1016/j.supflu.2005.12.004
    [21] JIANG P X, ZHANG Y, XU Y J, et al. Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical tube at low Reynolds numbers[J]. International Journal of Thermal Sciences, 2008, 47(8): 998-1011. doi: 10.1016/j.ijthermalsci.2007.08.003
    [22] JIANG P X, LIU B, ZHAO C R, et al. Convection heat transfer of supercritical pressure carbon dioxide in a vertical micro tube from transition to turbulent flow regime[J]. International Journal of Heat and Mass Transfer, 2013, 56(1-2): 741-749. doi: 10.1016/j.ijheatmasstransfer.2012.08.038
    [23] JIANG P X, XU Y J, LV J, et al. Experimental investigation of convection heat transfer of CO2 at super-critical pressures in vertical mini-tubes and in porous media[J]. Applied Thermal Engineering, 2004, 24(8-9): 1255-1270. doi: 10.1016/j.applthermaleng.2003.12.024
    [24] ZHAO C R, LIU Q F, ZHANG Z, et al. Investigation of buoyancy-enhanced heat transfer of supercritical CO2 in upward and downward tube flows[J]. The Journal of Supercritical Fluids, 2018, 138: 154-166. doi: 10.1016/j.supflu.2018.03.014
    [25] ZHANG S J, XU X X, LIU C, et al. Experimental and numerical comparison of the heat transfer behaviors and buoyancy effects of supercritical CO2 in various heating tubes[J]. International Journal of Heat and Mass Transfer, 2020, 149: 119074. doi: 10.1016/j.ijheatmasstransfer.2019.119074
    [26] LEMMON E W, HUBER M L, MCLINDEN M O. NIST standard reference database 23[S]. Washington, D. C. : National Institute of Standards and Technology, 2010.
    [27] CHENG X, KUANG B, YANG Y H. Numerical analysis of heat transfer in supercritical water cooled flow channels[J]. Nuclear Engineering and Design, 2007, 237(3): 240-252. doi: 10.1016/j.nucengdes.2006.06.011
    [28] YANG J, OKA Y, ISHIWATARI Y, et al. Numerical investigation of heat transfer in upward flows of supercritical water in circular tubes and tight fuel rod bundles[J]. Nuclear Engineering and Design, 2007, 237(4): 420-430. doi: 10.1016/j.nucengdes.2006.08.003
    [29] DU Z X, LIN W S, GU A Z. Numerical investigation of cooling heat transfer to supercritical CO2 in a horizontal circular tube[J]. The Journal of Supercritical Fluids, 2010, 55(1): 116-121. doi: 10.1016/j.supflu.2010.05.023
    [30] 陈玮玮. 管内超临界流动传热特性及应用研究[D]. 南京: 南京航空航天大学, 2016: 17-18.

    CHEN W W. Research on the heat transfer characteristics and application of In-tube supercritical flow[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016: 17-18 (in Chinese) .
    [31] HE S, KIM W S, JIANG P X, et al. Simulation of mixed convection heat transfer to carbon dioxide at supercritical pressure[J]. Journal of Mechanical Engineering Science, 2004, 218(11): 1281-1296. doi: 10.1177/095440620421801101
    [32] 杨世铭, 陶文铨. 传热学[M]. 4版. 北京: 高等教育出版社, 2006: 99-117.

    YANG S M, TAO W Q. Heat transfer[M]. 4th ed. Beijing: Higher Education Press, 2006: 99-117 (in Chinese).
    [33] PETUKHOV B S, POLYAKOV A F, KULESHOV V A, et al. Turbulent flow and heat transfer in horizontal tubes with substantial influence of thermogravitational forces[C]//Proceeding of the International Heat Transfer Conference 5. Connecticut: Begellhouse, 1974: 3-7.
    [34] JACKSON J D. Influences of buoyancy on heat transfer to fluids flowing in vertical tubes under turbulent conditions[J]. Turbulent Forced Convection in Channels and Bundles, 1979, 2: 613-640.
    [35] KIM D E, KIM M H. Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube[J]. Nuclear Engineering and Design, 2010, 240 (10): 3336-3349.
    [36] 吕海财, 赵金乐, 潘辉, 等. 超临界CO2水平管内浮升力和热加速效应评判准则[J]. 西安交通大学学报, 2018, 52(9): 140-147.

    LYU H C, ZHAO J L, PAN H, et al. Evaluation criterion of buoyancy and thermal acceleration behavior of supercritical CO2 in a horizontal circle tube[J]. Journal of Xi’an Jiaotong University, 2018, 52(9): 140-147 (in Chinese).
    [37] WANG K Z, XU X X, WU Y Y, et al. Numerical investigation on heat transfer of supercritical CO2 in heated helically coiled tubes[J]. The Journal of Supercritical Fluids, 2015, 99: 112-120. doi: 10.1016/j.supflu.2015.02.001
    [38] 孙健, 刘伟强. 高超声速飞行器热管冷却前缘结构一体化建模分析[J]. 物理学报, 2013, 62(7): 239-246.

    SUN J, LIU W Q. Investigation on integral model of heat-pipe-cooled leading edge of hypersonic vehicle[J]. Acta Physica Sinica, 2013, 62(7): 239-246 (in Chinese).
  • 加载中
图(27) / 表(2)
计量
  • 文章访问数:  261
  • HTML全文浏览量:  158
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-14
  • 录用日期:  2022-12-18
  • 网络出版日期:  2023-01-10
  • 整期出版日期:  2024-10-31

目录

    /

    返回文章
    返回
    常见问答