留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续变弯度后缘飞机的滚转机动载荷减缓

雷朝辉 杨超 宋晨 金天燚 吴志刚

雷朝辉,杨超,宋晨,等. 连续变弯度后缘飞机的滚转机动载荷减缓[J]. 北京航空航天大学学报,2024,50(10):3172-3182 doi: 10.13700/j.bh.1001-5965.2022.0772
引用本文: 雷朝辉,杨超,宋晨,等. 连续变弯度后缘飞机的滚转机动载荷减缓[J]. 北京航空航天大学学报,2024,50(10):3172-3182 doi: 10.13700/j.bh.1001-5965.2022.0772
LEI C H,YANG C,SONG C,et al. Rolling maneuver load alleviation of aircraft with continuously variable-camber trailing edge[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3172-3182 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0772
Citation: LEI C H,YANG C,SONG C,et al. Rolling maneuver load alleviation of aircraft with continuously variable-camber trailing edge[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3172-3182 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0772

连续变弯度后缘飞机的滚转机动载荷减缓

doi: 10.13700/j.bh.1001-5965.2022.0772
基金项目: 国家自然科学基金(11402013)
详细信息
    通讯作者:

    E-mail:songchen@buaa.edu.cn

  • 中图分类号: V212.1

Rolling maneuver load alleviation of aircraft with continuously variable-camber trailing edge

Funds: National Natural Science Foundation of China (11402013)
More Information
  • 摘要:

    变弯度后缘机翼具有变形连续、阻力较小、气动噪声较低等优势,越来越多地应用于新概念飞行器的设计之中。基于此,提出一种基于变弯度后缘的飞行器刚弹耦合动力学建模方法,并针对变弯度后缘飞机缩比模型开展了滚转机动仿真分析与风洞试验。结果表明:变弯度后缘可以操纵飞机在2 s内进行180°滚转机动。相较于外侧后缘单独变形,通过内外后缘协同变形可以降低30%以上的滚转机动附加载荷。另外,对比表明滚转角仿真结果与风洞试验数据误差小于6%,验证了所提方法的准确性。

     

  • 图 1  弹性飞机滚转机动仿真框架

    Figure 1.  Framework of rolling maneuver simulation of elastic aircraft

    图 2  PID控制器原理框图

    Figure 2.  Schematic diagram of PID controller

    图 3  仿真对象结构有限元模型

    Figure 3.  Structural finite element model of simulation object

    图 4  典型模态振型

    Figure 4.  Vibration forms of typical modes

    图 5  连续变弯度后缘模型

    Figure 5.  Model of continuously variable-camber trailing edge

    图 6  舵面等效偏转角

    Figure 6.  Equivalent deflection angle of control surface

    图 7  变形翼肋结构有限元模型变形分布

    Figure 7.  Deformation distribution of structural finite element model of flexible rib

    图 8  2种舵面模态构造方法对比

    Figure 8.  Comparison of two control surface mode construction methods

    图 9  不同舵面模态下滚转机动开环响应随时间变化曲线

    Figure 9.  Variation of open-loop response of rolling maneuver with time in different control surface modes

    图 10  弹性飞机滚转机动控制系统架构

    Figure 10.  Architecture of rolling maneuver control system of elastic aircraft

    图 11  滚转机动闭环响应及载荷随时间变化曲线

    Figure 11.  Variation of close-loop response of rolling maneuver and load with time

    图 12  不同超调量下的峰值载荷减缓率

    Figure 12.  Peak load alleviation rate under different overshoots

    图 13  风洞试验模型平面布局

    Figure 13.  Plane layout of wind tunnel test model

    图 14  风洞试验模型地面模态试验

    Figure 14.  Ground modal test of wind tunnel test model

    图 15  地面模态试验振型

    Figure 15.  Vibration forms of ground modal test

    图 16  舵系统扫频试验

    Figure 16.  Frequency sweep test of rudder system

    图 17  风洞中的试验模型

    Figure 17.  Test model in wind tunnel

    图 18  风洞试验系统框架

    Figure 18.  Framework of wind tunnel test system

    图 19  传感器布置示意图

    Figure 19.  Sensor placement

    图 20  风洞试验结果

    Figure 20.  Results of wind tunnel test

    图 21  风洞试验数据与仿真结果对比

    Figure 21.  Comparison of wind tunnel test data and simulation results

    表  1  全机结构动力学特性

    Table  1.   Structural dynamics characteristics of aircraft

    序号频率/Hz模态描述
    10全机滚转
    218.53机翼对称一弯
    327.64机翼反对称一弯
    439.51面内模态
    547.14机翼对称一扭
    下载: 导出CSV

    表  2  控制律参数优化结果

    Table  2.   Parameter optimization results of control law

    控制律参数 Kp1 Kp2 Kp3 Ki K1 K2
    基准控制 6.5176 0.0253 0 0.3323 −1 0
    滚转机动载荷减缓控制 6.3895 0.0321 0.0973 0.5189 0.6750 0.0916
    下载: 导出CSV

    表  3  地面模态试验结果

    Table  3.   Results of ground modal test

    序号频率/Hz模态描述
    11.52全机滚转
    211.09机翼对称一弯
    315.88机翼反对称一弯
    464.86机翼对称一扭
    下载: 导出CSV
  • [1] 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京: 北京航空航天大学出版社, 2005: 92-134.

    FANG Z P, CHEN W C, ZHANG S G. Flight dynamics of aircraft[M]. Beijing: Beihang University Press, 2005: 92-134(in Chinese).
    [2] WHITE R J. Improving the airplane efficiency by use of wing maneuver load alleviation[J]. Journal of Aircraft, 1971, 8(10): 769-775. doi: 10.2514/3.59169
    [3] WOODS-VEDELER J A, POTOTZKY A S, HOADLEY S T. Rolling maneuver load alleviation using active controls[J]. Journal of Aircraft, 1995, 32(1): 68-76. doi: 10.2514/3.46685
    [4] 张建刚, 何康乐, 金鑫. 飞机方案设计阶段机动载荷快速计算方法研究[J]. 力学与实践, 2020, 42(6): 726-730. doi: 10.6052/1000-0879-20-254

    ZHANG J G, HE K L, JIN X. A fast calculation method of maneuvering load in aircraft scheme design stage[J]. Mechanics in Engineering, 2020, 42(6): 726-730(in Chinese). doi: 10.6052/1000-0879-20-254
    [5] YIN H W, WU Z G, YANG C. Design and analysis of a wind tunnel test model system for rolling maneuver load alleviation of flying wings[C]//Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2015: 1860.
    [6] 秦航远, 吴志刚, 杨超, 等. 滚转机动载荷减缓风洞试验[J]. 北京航空航天大学学报, 2016, 42(9): 2008-2016.

    QIN H Y, WU Z G, YANG C, et al. Wind tunnel test of rolling maneuver load alleviation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(9): 2008-2016(in Chinese).
    [7] CHU L L, LI Q, GU F, et al. Design, modeling, and control of morphing aircraft: A review[J]. Chinese Journal of Aeronautics, 2022, 35(5): 220-246. doi: 10.1016/j.cja.2021.09.013
    [8] GOMEZ J C, GARCIA E. Morphing unmanned aerial vehicles[J]. Smart Material Structures, 2011, 20(10): 103001. doi: 10.1088/0964-1726/20/10/103001
    [9] HETRICK J, OSBORN R, KOTA S, et al. Flight testing of mission adaptive compliant wing[C]//Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007: 1709.
    [10] DECAMP R, HARDY R. Mission adaptive wing advanced research concepts[C]//Proceedings of the 11th Atmospheric Flight Mechanics Conference. Reston: AIAA, 1984: 2088.
    [11] GILBERT W. Development of a mission adaptive wing system for a tactical aircraft[C]//Proceedings of the Aircraft Systems Meeting. Reston: AIAA, 1980: 1886.
    [12] SATTI R, LI Y B, SHOCK R, et al. Computational aeroacoustic analysis of a high-lift configuration[C]//Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008: 34.
    [13] CHANZY Q, KEANE A J. Analysis and experimental validation of morphing UAV wings[J]. The Aeronautical Journal, 2018, 122(1249): 390-408. doi: 10.1017/aer.2017.130
    [14] WANG X R, MKHOYAN T, MKHOYAN I, et al. Seamless active morphing wing simultaneous gust and maneuver load alleviation[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(9): 1649-1662. doi: 10.2514/1.G005870
    [15] 杨超, 吴志刚, 万志强, 等. 飞行器气动弹性原理[M]. 北京: 北京航空航天大学出版社, 2011: 70-80.

    YANG C, WU Z G, WAN Z Q, et al. Aeroelasticity principle of aircraft[M]. Beijing: Beihang University Press, 2011: 70-80(in Chinese).
    [16] 张桢锴, 贾思嘉, 宋晨, 等. 柔性变弯度后缘机翼的风洞试验模型优化设计[J]. 航空学报, 2022, 43(3): 226071. doi: 10.7527/j.issn.1000-6893.2022.3.hkxb202203026

    ZHANG Z K, JIA S J, SONG C, et al. Optimum design of wind tunnel test model for compliant morphing trailing edge[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 226071(in Chinese). doi: 10.7527/j.issn.1000-6893.2022.3.hkxb202203026
    [17] FORSTER E, SANDERS B, EASTEP F. Modelling and sensitivity analysis of a variable geometry trailing edge control surface[C]// Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2003: 1807.
  • 加载中
图(21) / 表(3)
计量
  • 文章访问数:  260
  • HTML全文浏览量:  95
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-14
  • 录用日期:  2022-12-19
  • 网络出版日期:  2023-01-10
  • 整期出版日期:  2024-10-31

目录

    /

    返回文章
    返回
    常见问答