Rolling maneuver load alleviation of aircraft with continuously variable-camber trailing edge
-
摘要:
变弯度后缘机翼具有变形连续、阻力较小、气动噪声较低等优势,越来越多地应用于新概念飞行器的设计之中。基于此,提出一种基于变弯度后缘的飞行器刚弹耦合动力学建模方法,并针对变弯度后缘飞机缩比模型开展了滚转机动仿真分析与风洞试验。结果表明:变弯度后缘可以操纵飞机在2 s内进行180°滚转机动。相较于外侧后缘单独变形,通过内外后缘协同变形可以降低30%以上的滚转机动附加载荷。另外,对比表明滚转角仿真结果与风洞试验数据误差小于6%,验证了所提方法的准确性。
Abstract:The variable-camber trailing edge is frequently used in new concept aircraft design because of its advantages of continuous deformation, less resistance, and low aerodynamic noise. A rigid-elastic coupling dynamics modeling method based on the variable-camber trailing edge was proposed, and rolling maneuver simulation analysis and wind tunnel test were carried out using a scale model of aircraft with the variable-camber trailing edge. The results show that the variable-camber trailing edge can maneuver the aircraft to roll 180° within 2 s. Additional rolling maneuver load can be reduced by more than 30% through cooperative inner and outer trailing edge deformation compared to outer trailing edge deformation alone. In addition, a comparative study shows that the error between rolling maneuver simulation results and wind tunnel test data is less than 6%, which confirms the accuracy of the established theoretical model.
-
表 1 全机结构动力学特性
Table 1. Structural dynamics characteristics of aircraft
序号 频率/Hz 模态描述 1 0 全机滚转 2 18.53 机翼对称一弯 3 27.64 机翼反对称一弯 4 39.51 面内模态 5 47.14 机翼对称一扭 表 2 控制律参数优化结果
Table 2. Parameter optimization results of control law
控制律参数 Kp1 Kp2 Kp3 Ki K1 K2 基准控制 6.5176 0.0253 0 0.3323 −1 0 滚转机动载荷减缓控制 6.3895 0.0321 0.0973 0.5189 − 0.6750 − 0.0916 表 3 地面模态试验结果
Table 3. Results of ground modal test
序号 频率/Hz 模态描述 1 1.52 全机滚转 2 11.09 机翼对称一弯 3 15.88 机翼反对称一弯 4 64.86 机翼对称一扭 -
[1] 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M]. 北京: 北京航空航天大学出版社, 2005: 92-134.FANG Z P, CHEN W C, ZHANG S G. Flight dynamics of aircraft[M]. Beijing: Beihang University Press, 2005: 92-134(in Chinese). [2] WHITE R J. Improving the airplane efficiency by use of wing maneuver load alleviation[J]. Journal of Aircraft, 1971, 8(10): 769-775. doi: 10.2514/3.59169 [3] WOODS-VEDELER J A, POTOTZKY A S, HOADLEY S T. Rolling maneuver load alleviation using active controls[J]. Journal of Aircraft, 1995, 32(1): 68-76. doi: 10.2514/3.46685 [4] 张建刚, 何康乐, 金鑫. 飞机方案设计阶段机动载荷快速计算方法研究[J]. 力学与实践, 2020, 42(6): 726-730. doi: 10.6052/1000-0879-20-254ZHANG J G, HE K L, JIN X. A fast calculation method of maneuvering load in aircraft scheme design stage[J]. Mechanics in Engineering, 2020, 42(6): 726-730(in Chinese). doi: 10.6052/1000-0879-20-254 [5] YIN H W, WU Z G, YANG C. Design and analysis of a wind tunnel test model system for rolling maneuver load alleviation of flying wings[C]//Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2015: 1860. [6] 秦航远, 吴志刚, 杨超, 等. 滚转机动载荷减缓风洞试验[J]. 北京航空航天大学学报, 2016, 42(9): 2008-2016.QIN H Y, WU Z G, YANG C, et al. Wind tunnel test of rolling maneuver load alleviation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(9): 2008-2016(in Chinese). [7] CHU L L, LI Q, GU F, et al. Design, modeling, and control of morphing aircraft: A review[J]. Chinese Journal of Aeronautics, 2022, 35(5): 220-246. doi: 10.1016/j.cja.2021.09.013 [8] GOMEZ J C, GARCIA E. Morphing unmanned aerial vehicles[J]. Smart Material Structures, 2011, 20(10): 103001. doi: 10.1088/0964-1726/20/10/103001 [9] HETRICK J, OSBORN R, KOTA S, et al. Flight testing of mission adaptive compliant wing[C]//Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007: 1709. [10] DECAMP R, HARDY R. Mission adaptive wing advanced research concepts[C]//Proceedings of the 11th Atmospheric Flight Mechanics Conference. Reston: AIAA, 1984: 2088. [11] GILBERT W. Development of a mission adaptive wing system for a tactical aircraft[C]//Proceedings of the Aircraft Systems Meeting. Reston: AIAA, 1980: 1886. [12] SATTI R, LI Y B, SHOCK R, et al. Computational aeroacoustic analysis of a high-lift configuration[C]//Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008: 34. [13] CHANZY Q, KEANE A J. Analysis and experimental validation of morphing UAV wings[J]. The Aeronautical Journal, 2018, 122(1249): 390-408. doi: 10.1017/aer.2017.130 [14] WANG X R, MKHOYAN T, MKHOYAN I, et al. Seamless active morphing wing simultaneous gust and maneuver load alleviation[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(9): 1649-1662. doi: 10.2514/1.G005870 [15] 杨超, 吴志刚, 万志强, 等. 飞行器气动弹性原理[M]. 北京: 北京航空航天大学出版社, 2011: 70-80.YANG C, WU Z G, WAN Z Q, et al. Aeroelasticity principle of aircraft[M]. Beijing: Beihang University Press, 2011: 70-80(in Chinese). [16] 张桢锴, 贾思嘉, 宋晨, 等. 柔性变弯度后缘机翼的风洞试验模型优化设计[J]. 航空学报, 2022, 43(3): 226071. doi: 10.7527/j.issn.1000-6893.2022.3.hkxb202203026ZHANG Z K, JIA S J, SONG C, et al. Optimum design of wind tunnel test model for compliant morphing trailing edge[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 226071(in Chinese). doi: 10.7527/j.issn.1000-6893.2022.3.hkxb202203026 [17] FORSTER E, SANDERS B, EASTEP F. Modelling and sensitivity analysis of a variable geometry trailing edge control surface[C]// Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2003: 1807.