留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应参数优化RSSD-CYCBD的行星齿轮箱复合故障诊断

孙环宇 杨志鹏 王艺玮 郭琦

孙环宇,杨志鹏,王艺玮,等. 基于自适应参数优化RSSD-CYCBD的行星齿轮箱复合故障诊断[J]. 北京航空航天大学学报,2024,50(10):3139-3150 doi: 10.13700/j.bh.1001-5965.2022.0773
引用本文: 孙环宇,杨志鹏,王艺玮,等. 基于自适应参数优化RSSD-CYCBD的行星齿轮箱复合故障诊断[J]. 北京航空航天大学学报,2024,50(10):3139-3150 doi: 10.13700/j.bh.1001-5965.2022.0773
SUN H Y,YANG Z P,WANG Y W,et al. Compound fault diagnosis of planetary gearbox based on RSSD-CYCBD by adaptive parameter optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3139-3150 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0773
Citation: SUN H Y,YANG Z P,WANG Y W,et al. Compound fault diagnosis of planetary gearbox based on RSSD-CYCBD by adaptive parameter optimization[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3139-3150 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0773

基于自适应参数优化RSSD-CYCBD的行星齿轮箱复合故障诊断

doi: 10.13700/j.bh.1001-5965.2022.0773
基金项目: 国家科学技术支持计划(MKF20210012);国家自然科学基金(51805262)
详细信息
    通讯作者:

    E-mail:wangyiwei@buaa.edu.cn

  • 中图分类号: TH165.3;TP206.3

Compound fault diagnosis of planetary gearbox based on RSSD-CYCBD by adaptive parameter optimization

Funds: Nation Science and Technology Support Program of China (MKF20210012); National Natural Science Foundation of China (51805262)
More Information
  • 摘要:

    针对行星齿轮箱多振源耦合导致故障源辨识困难、较弱故障特征容易被噪声和较强故障特征掩盖,以及由传播路径引起的信号衰减导致的故障特征微弱等问题,提出一种自适应参数优化的共振稀疏分解(RSSD)和最大二阶循环平稳盲解卷积(CYCBD)的行星齿轮箱多故障耦合信号分离及诊断算法。根据轴承和齿轮故障的不同共振属性,用RSSD算法将多故障耦合信号分解为包含齿轮故障特征的高共振分量和主要包含轴承故障特征的低共振分量后,通过CYCBD算法分别对高、低分量进行解卷积,消除传播路径影响和噪声干扰,实现微弱故障特征的增强和提取。特别地,针对RSSD和CYCBD中参数优化困难、依赖人工经验和自适应差等问题,使用基于松鼠算法(SSA)对参数进行自适应优化选取,设计了融合包络谱峭度、自相关函数最大值均方根和特征频率比在内的复合指标作为优化目标。对解卷积后的信号进行包络解调提取故障特征频率,识别不同故障源。通过行星齿轮箱多故障模拟信号和实测信号验证了所提算法的有效性和可行性,进一步地,将所提算法集成在边缘计算设备中,为行星齿轮箱等旋转机械的状态检测诊断及远程运维提供解决方案。

     

  • 图 1  自适应参数优化RSSD-CYCBD算法流程

    Figure 1.  Flow of RSSD-CYCBD algorithm by adaptive parameter optimization

    图 2  仿真信号时域波形

    Figure 2.  Time domain waveform of simulated signal

    图 3  仿真信号时域波形和包络谱

    Figure 3.  Time domain waveform and envelope spectrum of simulated signal

    图 4  仿真信号高低共振分量的包络谱

    Figure 4.  Envelope spectrum of high and low resonance components of simulated signal

    图 5  仿真信号解卷积后高低共振分量的包络谱

    Figure 5.  Envelope spectrum of high and low resonance components after deconvolution of simulated signal

    图 6  转子齿轮传动系统综合故障实验台

    Figure 6.  Comprehensive fault test bench of rotor-gear transmission system

    图 7  太阳轮轴承外圈故障实物照片

    Figure 7.  Outer ring fault of sun gear bearing

    图 8  太阳轮断齿故障实物照片

    Figure 8.  Broken tooth fault of sun gear

    图 9  测点1实测信号时域波形图和包络谱

    Figure 9.  Time domain waveform and envelope spectrum of measured signal at point 1

    图 10  测点1信号高低共振分量的包络谱

    Figure 10.  Envelope spectrum of high and low resonance components of signal at point 1

    图 11  测点1处CYCBD解卷积后高低共振分量的包络谱

    Figure 11.  Envelope spectrum of high and low resonance components after deconvolution by CYCBD at point 1

    图 12  测点2实测信号时域波形图和包络谱

    Figure 12.  Time domain waveform and envelope spectrum of measured signal at point 2

    图 13  测点2信号高低共振分量的包络谱

    Figure 13.  Envelope spectrum of high and low resonance components of signal at point 2

    图 14  测点2处CYCBD解卷积后高低共振分量的包络谱

    Figure 14.  Envelope spectrum of high and low resonance components after deconvolution by CYCBD at point 2

    图 15  测点2处MED解卷积后高低共振分量的包络谱

    Figure 15.  Envelope spectrum of high and low resonance components after deconvolution by MED at point 2

    图 16  测点2处MCKD解卷积后高低共振分量的包络谱

    Figure 16.  Envelope spectrum of high and low resonance components after deconvolution by MCKD at point 2

    图 17  Jetson Nano开发板数据采集与故障分离诊断界面

    Figure 17.  Data acquisition and fault separation and diagnosis interface on Jetson Nano development board

    表  1  仿真信号参数

    Table  1.   Parameters of simulated signal

    $A$ $B$ $\theta $/rad $\phi $/rad $\varphi $/rad ${f_{\text{m}}}$/Hz ${f_{{\text{gear}}}}$/Hz $f_{\text{s}}^{{\text{(r)}}}$/Hz ${A_0}$ $f_{\text{i}}^{({\text{r}})}$/Hz ${f_{{\text{natural}}}}$/Hz $\varepsilon $ $M$ ${T_{\text{b}}}$/s ${f_{{\text{bear}}}}$/Hz ${\text{SNR}}$/dB
    1 1 0 0 0 280 40 16.67 0.3 16.67 2500 0.1 150 0.0111 90.091 −12
    下载: 导出CSV

    表  2  单级行星齿轮减速箱齿轮参数

    Table  2.   Gear parameters of single planetary gear reducer

    齿轮 齿数
    太阳轮 21
    行星轮 31
    内齿圈 84
    下载: 导出CSV

    表  3  单级行星齿轮减速箱理论故障特征频率

    Table  3.   Theoretical fault feature frequency of single planetary gear reducer

    啮合频率/Hz 绝对旋转频率/Hz 局部故障特征频率/Hz
    太阳轮 行星架 太阳轮 行星轮 齿圈
    500.92 29.82 5.96 71.56 16.16 17.89
    下载: 导出CSV

    表  4  6212轴承故障特征频率

    Table  4.   Fault feature frequency of 6212 bearing

    故障类型 特征频率/Hz
    内圈故障 175.68
    外圈故障 122.49
    滚动体故障 80.87
    下载: 导出CSV
  • [1] 张文义, 于德介, 陈向民. 齿轮箱复合故障诊断的信号共振分量能量算子解调方法[J]. 振动工程学报, 2015, 28(1): 148-155.

    ZHANG W Y, YU D J, CHEN X M. Energy operator demodulating of signal’s resonance components for the compound fault diagnosis of gearbox[J]. Journal of Vibration Engineering, 2015, 28(1): 148-155 (in Chinese).
    [2] 黄文涛, 付强, 窦宏印. 基于自适应优化品质因子的共振稀疏分解方法及其在行星齿轮箱复合故障诊断中的应用[J]. 机械工程学报, 2016, 52(15): 44-51. doi: 10.3901/JME.2016.15.044

    HUANG W T, FU Q, DOU H Y. Resonance-based sparse signal decomposition based on the quality factors optimization and its application of composite fault diagnosis to planetary gearbox[J]. Journal of Mechanical Engineering, 2016, 52(15): 44-51(in Chinese). doi: 10.3901/JME.2016.15.044
    [3] HE W P, CHEN B Q, ZENG N Y, et al. Sparsity-based signal extraction using dual Q-factors for gearbox fault detection[J]. ISA Transactions, 2018, 79: 147-160. doi: 10.1016/j.isatra.2018.05.009
    [4] YANG X Q, DING K, HE G L, et al. Double-dictionary signal decomposition method based on split augmented Lagrangian shrinkage algorithm and its application in gearbox hybrid faults diagnosis[J]. Journal of Sound Vibration, 2018, 432: 484-501. doi: 10.1016/j.jsv.2018.06.064
    [5] 王霄, 谢平, 郭源耕, 等. 基于多字典-共振稀疏分解的脉冲故障特征提取[J]. 中国机械工程, 2019, 30(20): 2456-2462. doi: 10.3969/j.issn.1004-132X.2019.20.008

    WANG X, XIE P, GUO Y G, et al. Impulse fault signature extraction based on multi-dictionary resonance-based sparse signal decomposition[J]. China Mechanical Engineering, 2019, 30(20): 2456-2462 (in Chinese). doi: 10.3969/j.issn.1004-132X.2019.20.008
    [6] SELESNICK I W. Resonance-based signal decomposition: A new sparsity-enabled signal analysis method[J]. Signal Processing, 2011, 91(12): 2793-2809. doi: 10.1016/j.sigpro.2010.10.018
    [7] 张琳, 黄敏. 基于EMD与切片双谱的轴承故障诊断方法[J]. 北京航空航天大学学报, 2010, 36(3): 287-290.

    ZHANG L, HUANG M. Fault diagnosis approach for bearing based on EMD and slice bi-spectrum[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(3): 287-290(in Chinese).
    [8] 余建波, 吕靖香, 程辉, 等. 基于ITD和改进形态滤波的滚动轴承故障诊断[J]. 北京航空航天大学学报, 2018, 44(2): 241-249.

    YU J B, LYU J X, CHENG H, et al. Fault diagnosis for rolling bearing based on ITD and improved morphological filter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 241-249(in Chinese).
    [9] 何群, 郭源耕, 王霄, 等. 基于信号共振稀疏分解和最大相关峭度解卷积的齿轮箱故障诊断[J]. 中国机械工程, 2017, 28(13): 1528-1534. doi: 10.3969/j.issn.1004-132X.2017.13.003

    HE Q, GUO Y G, WANG X, et al. Gearbox fault diagnosis based on RB-SSD and MCKD[J]. China Mechanical Engineering, 2017, 28(13): 1528-1534(in Chinese). doi: 10.3969/j.issn.1004-132X.2017.13.003
    [10] 齐咏生, 樊佶, 李永亭, 等. 一种改进的解卷积算法及其在滚动轴承复合故障诊断中的应用[J]. 振动与冲击, 2020, 39(21): 140-150.

    QI Y S, FAN J, LI Y T, et al. An improved deconvolution algorithm and its application in compound fault diagnosis of rolling bearing[J]. Journal of Vibration and Shock, 2020, 39(21): 140-150(in Chinese).
    [11] BUZZONI M, ANTONI J, D’ELIA G. Blind deconvolution based on cyclostationarity maximization and its application to fault identification[J]. Journal of Sound Vibration, 2018, 432: 569-601. doi: 10.1016/j.jsv.2018.06.055
    [12] JAIN M, SINGH V, RANI A. A novel nature-inspired algorithm for optimization: Squirrel search algorithm[J]. Swarm and Evolutionary Computation, 2019, 44(2): 148-175.
    [13] 王晓龙, 唐贵基, 周福成. 自适应可调品质因子小波变换在轴承早期故障诊断中的应用[J]. 航空动力学报, 2017, 32(10): 2467-2475.

    WANG X L, TANG G J, ZHOU F C. Application of adaptive tunable Q-factor wavelet transform on incipient fault diagnosis of bearing[J]. Journal of Aerospace Power, 2017, 32(10): 2467-2475(in Chinese).
    [14] 顾晓辉, 杨绍普, 刘永强, 等. 基于多目标交叉熵优化的轮对轴承故障特征提取方法[J]. 机械工程学报, 2018, 54(4): 285-292. doi: 10.3901/JME.2018.04.285

    GU X H, YANG S P, LIU Y Q, et al. Fault feature extraction of wheel-bearing based on multi-objective cross entropy optimization[J]. Journal of Mechanical Engineering, 2018, 54(4): 285-292 (in Chinese). doi: 10.3901/JME.2018.04.285
    [15] CHEN D Y, LIN J H, LI Y P. Modified complementary ensemble empirical mode decomposition and intrinsic mode functions evaluation index for high-speed train gearbox fault diagnosis[J]. Journal of Sound and Vibration, 2018, 424: 192-207. doi: 10.1016/j.jsv.2018.03.018
    [16] 李永波. 滚动轴承故障特征提取与早期诊断方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 101-102.

    LI Y B. Investigation of fault feature extraction and early fault diagnosis for rolling bearings[D]. Harbin: Harbin Institute of Technology, 2017: 101-102(in Chinese).
    [17] 张守京, 慎明俊, 杨静雯, 等. 改进的共振稀疏分解方法及其在滚动轴承复合故障诊断中的应用[J]. 中国机械工程, 2022, 33(14): 1697-1706. doi: 10.3969/j.issn.1004-132X.2022.14.008

    ZHANG S J, SHEN M J, YANG J W, et al. Improved RSSD and its applications to composite fault diagnosis of rolling bearings[J]. China Mechanical Engineering, 2022, 33(14): 1697-1706 (in Chinese). doi: 10.3969/j.issn.1004-132X.2022.14.008
    [18] WANG C G, LI H K, OU J Y, et al. Identification of planetary gearbox weak compound fault based on parallel dual-parameter optimized resonance sparse decomposition and improved MOMEDA[J]. Measurement, 2020, 165: 108079. doi: 10.1016/j.measurement.2020.108079
    [19] 黄包裕, 张永祥, 赵磊. 基于布谷鸟搜索算法和最大二阶循环平稳盲解卷积的滚动轴承故障诊断方法[J]. 机械工程学报, 2021, 57(9): 99-107.

    HUANG B Y, ZHANG Y X , ZHAO L. Research on fault diagnosis method of rolling bearings based on cuckoo search algorithm and maximum second order cyclostationary blind deconvolution[J]. Journal of Mechanical Engineering, 2021, 57(9): 99-107(in Chinese).
    [20] 冯志鹏, 赵镭镭, 褚福磊. 行星齿轮箱齿轮局部故障振动频谱特征[J]. 中国电机工程学报, 2013, 33(5): 119-127.

    FENG Z P, ZHAO L L, CHU F L. Vibration spectral characteristics of localized gear fault of planetary gearboxes[J]. Proceedings of the CSEE, 2013, 33(5): 119-127(in Chinese).
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  167
  • HTML全文浏览量:  82
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-14
  • 录用日期:  2022-09-30
  • 网络出版日期:  2022-11-08
  • 整期出版日期:  2024-10-31

目录

    /

    返回文章
    返回
    常见问答