Compound fault diagnosis of planetary gearbox based on RSSD-CYCBD by adaptive parameter optimization
-
摘要:
针对行星齿轮箱多振源耦合导致故障源辨识困难、较弱故障特征容易被噪声和较强故障特征掩盖,以及由传播路径引起的信号衰减导致的故障特征微弱等问题,提出一种自适应参数优化的共振稀疏分解(RSSD)和最大二阶循环平稳盲解卷积(CYCBD)的行星齿轮箱多故障耦合信号分离及诊断算法。根据轴承和齿轮故障的不同共振属性,用RSSD算法将多故障耦合信号分解为包含齿轮故障特征的高共振分量和主要包含轴承故障特征的低共振分量后,通过CYCBD算法分别对高、低分量进行解卷积,消除传播路径影响和噪声干扰,实现微弱故障特征的增强和提取。特别地,针对RSSD和CYCBD中参数优化困难、依赖人工经验和自适应差等问题,使用基于松鼠算法(SSA)对参数进行自适应优化选取,设计了融合包络谱峭度、自相关函数最大值均方根和特征频率比在内的复合指标作为优化目标。对解卷积后的信号进行包络解调提取故障特征频率,识别不同故障源。通过行星齿轮箱多故障模拟信号和实测信号验证了所提算法的有效性和可行性,进一步地,将所提算法集成在边缘计算设备中,为行星齿轮箱等旋转机械的状态检测诊断及远程运维提供解决方案。
-
关键词:
- 多源故障分离 /
- 共振稀疏分解 /
- 最大二阶循环平稳盲解卷积 /
- 松鼠算法 /
- 行星齿轮箱
Abstract:The coupling of multiple vibration sources of planetary gearboxes results in difficulty in identifying fault sources, and weak fault features are easily masked by noise and strong fault features. In addition, signal attenuation caused by the propagation path causes weak fault features. To address these issues, a multi-fault coupled signal separation and diagnosis method for planetary gearboxes utilizing resonance-based sparse signal decomposition (RSSD) by adaptive parameter optimization and maximum second order cyclostationary blind deconvolution (CYCBD) was proposed. According to the different resonance properties of bearing faults and gear faults, the multi-fault coupled signal was divided into high resonance components containing gear fault features and low resonance components mainly containing bearing fault features by RSSD. Then, the two components were treated by the CYCBD to eliminate the influence of the propagation path and noise interference, so as to enhance and extract weak fault features. In particular, to solve the problems of difficulty in parameter optimization, dependence on artificial experience, and poor adaptation in RSSD and CYCBD, an adaptive parameter optimization method based on the squirrel search algorithm (SSA) was proposed, and a composite index integrating kurtosis of envelope spectrum, root mean square of autocorrelation function maximum, and characteristic frequency ratio was designed as an optimization objective. Finally, envelope demodulation was performed on the deconvolved signal to extract the fault feature frequency and identify different fault sources. The effectiveness and feasibility of the proposed algorithm were verified by the multi-fault simulation signal and the measured signal of the planetary gearbox. Moreover, the proposed method was integrated into edge computing equipment to provide solutions for state detection and diagnosis, as well as remote operation and maintenance of rotating machinery such as planetary gearboxes.
-
表 1 仿真信号参数
Table 1. Parameters of simulated signal
$A$ $B$ $\theta $/rad $\phi $/rad $\varphi $/rad ${f_{\text{m}}}$/Hz ${f_{{\text{gear}}}}$/Hz $f_{\text{s}}^{{\text{(r)}}}$/Hz ${A_0}$ $f_{\text{i}}^{({\text{r}})}$/Hz ${f_{{\text{natural}}}}$/Hz $\varepsilon $ $M$ ${T_{\text{b}}}$/s ${f_{{\text{bear}}}}$/Hz ${\text{SNR}}$/dB 1 1 0 0 0 280 40 16.67 0.3 16.67 2500 0.1 150 0.0111 90.091 −12 表 2 单级行星齿轮减速箱齿轮参数
Table 2. Gear parameters of single planetary gear reducer
齿轮 齿数 太阳轮 21 行星轮 31 内齿圈 84 表 3 单级行星齿轮减速箱理论故障特征频率
Table 3. Theoretical fault feature frequency of single planetary gear reducer
啮合频率/Hz 绝对旋转频率/Hz 局部故障特征频率/Hz 太阳轮 行星架 太阳轮 行星轮 齿圈 500.92 29.82 5.96 71.56 16.16 17.89 表 4 6212轴承故障特征频率
Table 4. Fault feature frequency of 6212 bearing
故障类型 特征频率/Hz 内圈故障 175.68 外圈故障 122.49 滚动体故障 80.87 -
[1] 张文义, 于德介, 陈向民. 齿轮箱复合故障诊断的信号共振分量能量算子解调方法[J]. 振动工程学报, 2015, 28(1): 148-155.ZHANG W Y, YU D J, CHEN X M. Energy operator demodulating of signal’s resonance components for the compound fault diagnosis of gearbox[J]. Journal of Vibration Engineering, 2015, 28(1): 148-155 (in Chinese). [2] 黄文涛, 付强, 窦宏印. 基于自适应优化品质因子的共振稀疏分解方法及其在行星齿轮箱复合故障诊断中的应用[J]. 机械工程学报, 2016, 52(15): 44-51. doi: 10.3901/JME.2016.15.044HUANG W T, FU Q, DOU H Y. Resonance-based sparse signal decomposition based on the quality factors optimization and its application of composite fault diagnosis to planetary gearbox[J]. Journal of Mechanical Engineering, 2016, 52(15): 44-51(in Chinese). doi: 10.3901/JME.2016.15.044 [3] HE W P, CHEN B Q, ZENG N Y, et al. Sparsity-based signal extraction using dual Q-factors for gearbox fault detection[J]. ISA Transactions, 2018, 79: 147-160. doi: 10.1016/j.isatra.2018.05.009 [4] YANG X Q, DING K, HE G L, et al. Double-dictionary signal decomposition method based on split augmented Lagrangian shrinkage algorithm and its application in gearbox hybrid faults diagnosis[J]. Journal of Sound Vibration, 2018, 432: 484-501. doi: 10.1016/j.jsv.2018.06.064 [5] 王霄, 谢平, 郭源耕, 等. 基于多字典-共振稀疏分解的脉冲故障特征提取[J]. 中国机械工程, 2019, 30(20): 2456-2462. doi: 10.3969/j.issn.1004-132X.2019.20.008WANG X, XIE P, GUO Y G, et al. Impulse fault signature extraction based on multi-dictionary resonance-based sparse signal decomposition[J]. China Mechanical Engineering, 2019, 30(20): 2456-2462 (in Chinese). doi: 10.3969/j.issn.1004-132X.2019.20.008 [6] SELESNICK I W. Resonance-based signal decomposition: A new sparsity-enabled signal analysis method[J]. Signal Processing, 2011, 91(12): 2793-2809. doi: 10.1016/j.sigpro.2010.10.018 [7] 张琳, 黄敏. 基于EMD与切片双谱的轴承故障诊断方法[J]. 北京航空航天大学学报, 2010, 36(3): 287-290.ZHANG L, HUANG M. Fault diagnosis approach for bearing based on EMD and slice bi-spectrum[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(3): 287-290(in Chinese). [8] 余建波, 吕靖香, 程辉, 等. 基于ITD和改进形态滤波的滚动轴承故障诊断[J]. 北京航空航天大学学报, 2018, 44(2): 241-249.YU J B, LYU J X, CHENG H, et al. Fault diagnosis for rolling bearing based on ITD and improved morphological filter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 241-249(in Chinese). [9] 何群, 郭源耕, 王霄, 等. 基于信号共振稀疏分解和最大相关峭度解卷积的齿轮箱故障诊断[J]. 中国机械工程, 2017, 28(13): 1528-1534. doi: 10.3969/j.issn.1004-132X.2017.13.003HE Q, GUO Y G, WANG X, et al. Gearbox fault diagnosis based on RB-SSD and MCKD[J]. China Mechanical Engineering, 2017, 28(13): 1528-1534(in Chinese). doi: 10.3969/j.issn.1004-132X.2017.13.003 [10] 齐咏生, 樊佶, 李永亭, 等. 一种改进的解卷积算法及其在滚动轴承复合故障诊断中的应用[J]. 振动与冲击, 2020, 39(21): 140-150.QI Y S, FAN J, LI Y T, et al. An improved deconvolution algorithm and its application in compound fault diagnosis of rolling bearing[J]. Journal of Vibration and Shock, 2020, 39(21): 140-150(in Chinese). [11] BUZZONI M, ANTONI J, D’ELIA G. Blind deconvolution based on cyclostationarity maximization and its application to fault identification[J]. Journal of Sound Vibration, 2018, 432: 569-601. doi: 10.1016/j.jsv.2018.06.055 [12] JAIN M, SINGH V, RANI A. A novel nature-inspired algorithm for optimization: Squirrel search algorithm[J]. Swarm and Evolutionary Computation, 2019, 44(2): 148-175. [13] 王晓龙, 唐贵基, 周福成. 自适应可调品质因子小波变换在轴承早期故障诊断中的应用[J]. 航空动力学报, 2017, 32(10): 2467-2475.WANG X L, TANG G J, ZHOU F C. Application of adaptive tunable Q-factor wavelet transform on incipient fault diagnosis of bearing[J]. Journal of Aerospace Power, 2017, 32(10): 2467-2475(in Chinese). [14] 顾晓辉, 杨绍普, 刘永强, 等. 基于多目标交叉熵优化的轮对轴承故障特征提取方法[J]. 机械工程学报, 2018, 54(4): 285-292. doi: 10.3901/JME.2018.04.285GU X H, YANG S P, LIU Y Q, et al. Fault feature extraction of wheel-bearing based on multi-objective cross entropy optimization[J]. Journal of Mechanical Engineering, 2018, 54(4): 285-292 (in Chinese). doi: 10.3901/JME.2018.04.285 [15] CHEN D Y, LIN J H, LI Y P. Modified complementary ensemble empirical mode decomposition and intrinsic mode functions evaluation index for high-speed train gearbox fault diagnosis[J]. Journal of Sound and Vibration, 2018, 424: 192-207. doi: 10.1016/j.jsv.2018.03.018 [16] 李永波. 滚动轴承故障特征提取与早期诊断方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 101-102.LI Y B. Investigation of fault feature extraction and early fault diagnosis for rolling bearings[D]. Harbin: Harbin Institute of Technology, 2017: 101-102(in Chinese). [17] 张守京, 慎明俊, 杨静雯, 等. 改进的共振稀疏分解方法及其在滚动轴承复合故障诊断中的应用[J]. 中国机械工程, 2022, 33(14): 1697-1706. doi: 10.3969/j.issn.1004-132X.2022.14.008ZHANG S J, SHEN M J, YANG J W, et al. Improved RSSD and its applications to composite fault diagnosis of rolling bearings[J]. China Mechanical Engineering, 2022, 33(14): 1697-1706 (in Chinese). doi: 10.3969/j.issn.1004-132X.2022.14.008 [18] WANG C G, LI H K, OU J Y, et al. Identification of planetary gearbox weak compound fault based on parallel dual-parameter optimized resonance sparse decomposition and improved MOMEDA[J]. Measurement, 2020, 165: 108079. doi: 10.1016/j.measurement.2020.108079 [19] 黄包裕, 张永祥, 赵磊. 基于布谷鸟搜索算法和最大二阶循环平稳盲解卷积的滚动轴承故障诊断方法[J]. 机械工程学报, 2021, 57(9): 99-107.HUANG B Y, ZHANG Y X , ZHAO L. Research on fault diagnosis method of rolling bearings based on cuckoo search algorithm and maximum second order cyclostationary blind deconvolution[J]. Journal of Mechanical Engineering, 2021, 57(9): 99-107(in Chinese). [20] 冯志鹏, 赵镭镭, 褚福磊. 行星齿轮箱齿轮局部故障振动频谱特征[J]. 中国电机工程学报, 2013, 33(5): 119-127.FENG Z P, ZHAO L L, CHU F L. Vibration spectral characteristics of localized gear fault of planetary gearboxes[J]. Proceedings of the CSEE, 2013, 33(5): 119-127(in Chinese).