留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

星基增强系统单频服务性能评估方法

金彪 李锐 王盾 刘磊 原晋栩 李子潇

金彪,李锐,王盾,等. 星基增强系统单频服务性能评估方法[J]. 北京航空航天大学学报,2024,50(10):3062-3073 doi: 10.13700/j.bh.1001-5965.2022.0785
引用本文: 金彪,李锐,王盾,等. 星基增强系统单频服务性能评估方法[J]. 北京航空航天大学学报,2024,50(10):3062-3073 doi: 10.13700/j.bh.1001-5965.2022.0785
JIN B,LI R,WANG D,et al. Service performance assessment method of single frequency SBAS[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3062-3073 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0785
Citation: JIN B,LI R,WANG D,et al. Service performance assessment method of single frequency SBAS[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3062-3073 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0785

星基增强系统单频服务性能评估方法

doi: 10.13700/j.bh.1001-5965.2022.0785
基金项目: 国家自然科学基金(41974041)
详细信息
    通讯作者:

    E-mail:dawun04@163.com

  • 中图分类号: P228

Service performance assessment method of single frequency SBAS

Funds: National Natural Science Foundation of China (41974041)
More Information
  • 摘要:

    针对星基增强系统(SBAS)用户差分距离误差(UDRE)完好性参数评估时双频无电离层组合放大观测噪声的问题,提出伪距域完好性评估方法,该方法反映了SBAS电离层改正数和星历时钟改正数的综合影响。利用240天共100个国际全球导航卫星系统(GNSS)服务组织(IGS)测站的数据对美国广域增强系统(WAAS)和欧洲地球静止轨道导航重叠服务(EGNOS)的性能进行评估。结果表明:WAAS和EGNOS格网电离层垂直误差(GIVE)参数的完好性分别为99.96%和99.91%,电离层延迟改正精度达到0.56 m。WAAS和EGNOS伪距域完好性优于99.999%,经改正后的GPS用户测距误差(URE)精度达到0.34 m。WAAS 95%的水平和垂直定位误差为1.19 m和1.72 m,EGNOS的则为1.18 m和1.68 m。评估时段内均未发生完好性风险事件,验证了测地型接收机用于SBAS服务性能评估的可行性。WAAS在一类垂直引导进近(APV-I)阶段的定位精度平均可用性为99.9%,二类垂直引导进近(APV-II)阶段在服务中心区域的定位精度可用性为80%~95%;EGNOS APV-I阶段平均定位精度可用性为99.9%,APV-II阶段平均定位精度可用性为94.2%,可用性较高,主要是由于EGNOS评估测站多处于服务区中心。SBAS定位精度可用性在服务区边缘部分下降较明显。

     

  • 图 1  SBAS GEO卫星位置和选用的IGS测站位置

    Figure 1.  Positions of SBAS GEO satellites and selected IGS stations

    图 2  SBAS电文超时率

    Figure 2.  Timeout rate of SBAS message

    图 3  SBAS电文平均播发间隔

    Figure 3.  SBAS average message broadcast interval

    图 4  各测站SBAS GIVE参数完好性

    Figure 4.  SBAS GIVE integrity of each station

    图 5  NLIB测站2022年第2天GIVE和电离层残差

    Figure 5.  GIVE and ionospheric residuals of NLIB station on day 2 in 2022

    图 6  各测站SBAS电离层延迟改正精度

    Figure 6.  SBAS ionospheric delay correction accuracy of each station

    图 7  各测站SBAS伪距域完好性

    Figure 7.  SBAS pseudo range domain integrity of each station

    图 8  经SBAS改正后各测站GPS卫星URE精度

    Figure 8.  GPS satellites URE accuracy of each station after using the SBAS corrections

    图 9  各测站SBAS垂直定位精度

    Figure 9.  SBAS vertical positioning accuracy of each station

    图 10  SBAS定位误差分布

    Figure 10.  SBAS positioning error distribution

    图 11  AJAC测站利用EGNOS 126和123号卫星电文定位的误差

    Figure 11.  Positioning errors of station AJAC based on the SBAS messages from EGNOS 126 and 123 satellites

    图 12  SBAS定位精度相对于GPS的提升

    Figure 12.  SBAS positioning accuracy improvement compared with GPS

    图 13  SBAS垂直定位结果斯坦福图

    Figure 13.  Stanford diagram of SBAS vertical positioning results

    图 14  WAAS定位精度的可用性

    Figure 14.  WAAS availability of positioning accuracy

    图 15  EGNOS定位精度的可用性

    Figure 15.  EGNOS availability of positioning accuracy

  • [1] WALTER T, SHALLBERG K, ALTSHULER E, et al. WAAS at 15[J]. Navigation, 2018, 65(4): 581-600. doi: 10.1002/navi.252
    [2] TABTI L, KAHLOUCHE S, BENADDA B, et al. Improvement of single-frequency GPS positioning performance based on EGNOS corrections in Algeria[J]. Journal of Navigation, 2020, 73(4): 846-860. doi: 10.1017/S037346331900095X
    [3] DAMMALAGE T, DE SILVA D N, SATIRAPOD C. Performance analysis of GPS aided geo augmented navigation (GAGAN) over Sri Lanka[J]. Engineering Journal, 2017, 21(5): 305-314. doi: 10.4186/ej.2017.21.5.305
    [4] SAITO S. MSAS system development [EB/OL]. (2019-06-05) [2022-08-25]. https://www.icao.int/APAC/APAC-RSO/GBASSBAS%20Implementation%20Workshop/1-6_MSAS%20System%20Development_Rev2%20(S%20Saito).pdf.
    [5] CHEN S S, JIN B, LI D J, et al. Study on the prediction method of single and dual frequency service area for BDSBAS[C]//Proceedings of the China Satellite Navigation Conference. Berlin: Springer, 2019: 228-237.
    [6] ZHAO L Q, HU X G, TANG C P, et al. Generation of DFMC SBAS corrections for BDS-3 satellites and improved positioning performances[J]. Advances in Space Research, 2020, 66(3): 702-714. doi: 10.1016/j.asr.2020.04.032
    [7] WU J Z, WANG K, EL-MOWAFY A. Preliminary performance analysis of a prototype DFMC SBAS service over Australia and Asia-Pacific[J]. Advances in Space Research, 2020, 66(6): 1329-1341. doi: 10.1016/j.asr.2020.05.026
    [8] LEE E. System development-KASS[EB/OL]. (2019-06-05)[2022-08-25]. https://www.icao.int/APAC/APAC-RSO/GBASSBAS%20Implementation%20Workshop/1-8_KASS_Development_Status_final%20(E%20Lee).pdf.
    [9] JIN B, CHEN S S, LI D J, et al. Ionospheric correlation analysis and spatial threat model for SBAS in China region[J]. Advances in Space Research, 2020, 66(12): 2873-2887. doi: 10.1016/j.asr.2020.05.010
    [10] 金彪, 魏巍, 陈姗姗, 等. SBAS星历改正数及UDRE参数生成算法分析[J]. 武汉大学学报(信息科学版), 2021, 46(1): 111-117.

    JIN B, WEI W, CHEN S S, et al. Analysis of SBAS ephemeris correction and UDRE generation algorithm[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 111-117 (in Chinese).
    [11] JIN B, CHEN S S, LI D J, et al. Performance analysis of SBAS ephemeris corrections and integrity algorithms in China region[J]. Satellite Navigation, 2021, 2(1): 15. doi: 10.1186/s43020-021-00045-z
    [12] WU J T, PECK S. An analysis of satellite integrity monitoring improvement for WAAS[C]//Proceedings of the 15th International Technical Meeting of the Satellite Division of the Institute of Navigation. Washington, D. C. : Institute of Navigation, 2002: 756-765.
    [13] BLANCH J, WALTER T, ENGE P. A Clock and ephemeris algorithm for dual frequency SBAS[C]//Proceedings of the 24th International Technical Meeting of the Satellite Division of The Institute of Navigation. Washington, D. C. : Institute of Navigation, 2011: 2513-2519.
    [14] BLANCH J, WALTER T, ENGE P. Evaluation of a covariance-based clock and ephemeris error bounding algorithm for SBAS[C]//Proceedings of the 27th International Meeting of the Satellite Division of The Institute of Navigation. Washington, D. C.: Institute of Navigation, 2014: 3270-3276.
    [15] SHAO B, DING Q, WU X B. Estimation method of SBAS dual-frequency range error integrity parameter[J]. Satellite Navigation, 2020, 1(1): 1-8. doi: 10.1186/s43020-020-00011-1
    [16] WALTER T, HANSEN A, BLANCH J, et al. Robust detection of ionospheric irregularities[J]. Navigation, 2001, 48(2): 89-100. doi: 10.1002/j.2161-4296.2001.tb00231.x
    [17] SPARKS L, BLANCH J, PANDYA N. Estimating ionospheric delay using Kriging: 1. Methodology[J]. Radio Science, 2011, 46(06): 1-13.
    [18] SPARKS L, BLANCH J, PANDYA N. Estimating ionospheric delay using Kriging: 2. Impact on satellite-based augmentation system availability[J]. Radio Science, 2011, 46(6): 1-10.
    [19] WALTER T, KEE C, CHAO Y, et al. Flight trials of the wide area augmentation system (WAAS)[C]//Proceedings of the 7th International Technical Meeting of the Satellite Division of The Institute of Navigation. Washington, D. C.: Institute of Navigation, 1994: 1537-1546.
    [20] PERRIN O, SCARAMUZZA M, BUCHANAN T, et al. Flying EGNOS approaches in the Swiss Alps[J]. Journal of Navigation, 2006, 59(2): 177-185. doi: 10.1017/S0373463306003754
    [21] SPECHT C, PAWELSKI J, SMOLAREK L, et al. Assessment of the positioning accuracy of DGPS and EGNOS systems in the bay of gdansk using maritime dynamic measurements[J]. Journal of Navigation, 2019, 72(3): 575-587. doi: 10.1017/S0373463318000838
    [22] HEßELBARTH A, WANNINGER L. SBAS orbit and satellite clock corrections for precise point positioning[J]. GPS Solutions, 2013, 17(4): 465-473. doi: 10.1007/s10291-012-0292-6
    [23] 楼益栋, 郑福, 龚晓鹏, 等. QZSS系统在中国区域增强服务性能评估与分析[J]. 武汉大学学报(信息科学版), 2016, 41(3): 298-303.

    LOU Y D, ZHENG F, GONG X P, et al. Evaluation of QZSS system augmentation service performance in China region[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 298-303 (in Chinese).
    [24] HIRSCHBERGER M J, LO S, WALTER T. Reevaluating the message loss rate of the wide area augmentation system (WAAS) in flight[C]//Proceedings of the 2021 International Technical Meeting of The Institute of Navigation. Washington, D. C. : Institute of Navigation, 2021: 218-228.
    [25] 陈姗姗, 金彪, 赵立谦, 等. SBAS电文时序动态编排算法[J]. 北京航空航天大学学报, 2021, 47(10): 1996-2005.

    CHEN S S, JIN B, ZHAO L Q, et al. Dynamic SBAS message scheduler algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 1996-2005 (in Chinese).
    [26] 常志巧, 陈金平, 刘利, 等. WAAS电离层格网播发特性及其性能评估[J]. 天文学进展, 2021, 39(2): 265-275. doi: 10.3969/j.issn.1000-8349.2021.02.07

    CHANG Z Q, CHEN J P, LIU L, et al. Broadcast characteristics and performance evaluation of WAAS ionospheric grid[J]. Progress in Astronomy, 2021, 39(2): 265-275 (in Chinese). doi: 10.3969/j.issn.1000-8349.2021.02.07
    [27] 金彪, 陈姗姗, 李祝莲, 等. SBAS GEO卫星URE精度及定位增强研究[J/OL]. 武汉大学学报(信息科学版), (2021-09-16)[2022-08-27]. https://kns.cnki.net/kcms/detail/42.1676.TN.20210915.1217.007.html.

    JIN B, CHEN S S, LI Z L, et al. SBAS GEO satellite user range error and position augmentation research[J/OL]. Geomatics and Information Science of Wuhan University, (2021-09-16)[2022-08-27]. https://kns.cnki.net/kcms/detail/42.1676.TN.20210915.1217.007.html (in Chinese).
    [28] 蔡洪亮, 孟轶男, 耿长江, 等. 北斗三号全球导航卫星系统服务性能评估: 定位导航授时、星基增强、精密单点定位、短报文通信与国际搜救[J]. 测绘学报, 2021, 50(4): 427-435.

    CAI H L, MENG Y N, GENG C J, et al. BDS-3 performance assessment: PNT, SBAS, PPP, SMC and SAR[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 427-435 (in Chinese).
    [29] International Civil Aviation Organization. International standards and recommended practices annex 10 Vol. I. radio navigation aids: ISBN 978-92-9258-504-4[S]. Quebec: ICAO, 2018.
    [30] RTCA. Minimum operational performance standards for global positioning system/wide area augmentation system airborne equipment: RTCA-DO-229D[S]. Washington, D. C. : RTCA, 2006.
    [31] REN X D, CHEN J, LI X X, et al. Ionospheric total electron content estimation using GNSS carrier phase observations based on zero-difference integer ambiguity: methodology and assessment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 817-830. doi: 10.1109/TGRS.2020.2989131
    [32] WANG N B, LI Z S, DUAN B B, et al. GPS and GLONASS observable-specific code bias estimation: comparison of solutions from the IGS and MGEX networks[J]. Journal of Geodesy, 2020, 94(8): 74. doi: 10.1007/s00190-020-01404-5
    [33] LIU J B, HERNANDEZ-PAJARES M, LIANG X L, et al. Temporal and spatial variations of global ionospheric total electron content under various solar conditions[J]. Journal of Geodesy, 2017, 91(5): 485-502. doi: 10.1007/s00190-016-0977-7
    [34] European GNSS Agency. EGNOS safety of life (SoL) service definition document: 9789292060510[S]. Luxembourg: European GNSS Agency, 2021: 53-57.
    [35] NIE Z X, ZHOU P Y, LIU F, et al. Evaluation of orbit, clock and ionospheric corrections from five currently available SBAS L1 services: Methodology and analysis[J]. Remote Sensing, 2019, 11(4): 411. doi: 10.3390/rs11040411
    [36] FAA. Wide area augmentation system performance analysis report: NJ08405 [R]. Washton, D. C.: Federal Aviation Administration, 2022.
    [37] European Satellite Services Provider. Monthly performance report: ESSP-DRD-24152 [R]. Toulouse: ESSP SAS, 2019.
  • 加载中
图(15)
计量
  • 文章访问数:  281
  • HTML全文浏览量:  113
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-15
  • 录用日期:  2022-11-04
  • 网络出版日期:  2023-02-01
  • 整期出版日期:  2024-10-31

目录

    /

    返回文章
    返回
    常见问答