-
摘要:
空中目标分群本质上是一个类数未知的聚类问题,也是战场态势估计领域中的研究热点。针对未知的空战场环境,从聚类角度提出一种基于流形距离和k近邻采样密度的MDk-DPC算法。引入流形距离代替欧氏距离,以增加同一流形中目标的相似性;利用k近邻计算目标的局部密度,使其能更真实地反映目标周围分布;通过自适应选取聚类中心方法确定聚类中心,并运用密度峰值算法指定剩余点类别完成分群。仿真实验表明,所提方法在人工合成数据集和UCI真实数据集上均有更好的聚类性能,同时通过对空战场仿真数据进行分群验证了所提方法的可行性和有效性。
Abstract:Air target grouping is a popular topic for research in the area of combat scenario assessment and can be thought of as essentially an uncountable class clustering issue. Aiming at the unknown air battlefield environment, a MDk-DPC algorithm based on manifold distance and k-nearest neighbor sampling density is proposed from the perspective of clustering. First, manifold distance is introduced to replace Euclidean distance to increase the similarity of objects in the same manifold. Secondly, the target's local density is determined using the k-nearest neighbors method, allowing the local density to more accurately represent the distribution surrounding the targets. Finally, an adaptive cluster center selection method is proposed to automatically determine cluster centers, and the DPC algorithm is used to specify the remaining point categories to complete the clustering. Simulation experiments show that the proposed method has better clustering performance on both artificial synthetic datasets and UCI real datasets. At the same time, the feasibility and effectiveness of the method are verified by clustering the simulated air battlefield data.
-
表 1 不同伸缩因子下的Jain数据集聚类结果对比
Table 1. Comparison of clustering results of Jain dataset with different scaling factors
ρ 纯度 e0.5 0.9249 e3 1 e10 1 表 2 人工数据集基本信息
Table 2. Basic information of artificial dataset
数据集 数据数量 类数 维数 Spiral 312 3 2 Flame 240 2 2 Jain 373 2 2 Lineblobs 266 3 2 Threecircles 299 3 2 R15 600 15 2 表 3 人工数据集上的分群结果比较
Table 3. Comparison of clustering results on artificial datasets
数据集 算法 纯度 RI ARI NMI Spiral K-means 0.3686 0.5553 − 0.0030 0.0031 DBSCAN 1 1 1 1 DPC 1 1 1 1 M-CFSFDP 1 1 1 1 MDk-DPC 1 1 1 1 Flame K-means 0.8375 0.7267 0.4535 0.4193 DBSCAN 0.9667 0.9200 0.8408 0.7566 DPC 1 1 1 1 M-CFSFDP 1 1 1 1 MDk-DPC 1 1 1 1 Jain K-means 0.8365 0.7257 0.4483 0.4428 DBSCAN 1 0.9698 0.9373 0.8550 DPC 0.9035 0.8251 0.6438 0.5960 M-CFSFDP 0.9437 0.8935 0.7684 0.6855 MDk-DPC 1 1 1 1 Lineblobs K-means 0.7444 0.7284 0.4077 0.5358 DBSCAN 1 1 1 1 DPC 0.7519 0.7345 0.4201 0.5450 M-CFSFDP 0.8534 0.8318 0.6283 0.7430 MDk-DPC 1 1 1 1 Threecircles K-means 0.6254 0.5758 0.1598 0.2298 DBSCAN 1 0.9766 0.9488 0.9448 DPC 0.5719 0.4565 0.0659 0.1823 M-CFSFDP 0.6522 0.5452 0.1697 0.3085 MDk-DPC 1 1 1 1 R15 K-means 0.9933 0.9983 0.9857 0.9893 DBSCAN 0.7317 0.9112 0.5511 0.8852 DPC 0.9950 0.9987 0.9893 0.9922 M-CFSFDP 0.9967 0.9991 0.9928 0.9942 MDk-DPC 0.9967 0.9991 0.9928 0.9942 表 4 UCI真实数据集基本信息
Table 4. Basic information of UCI real dataset
数据集 数据数量 类数 维数 各类数量 WDBC 569 2 30 357,212 Iris 150 3 4 50,50,50 Wine 178 3 13 59,71,48 Seeds 210 3 7 70,70,70 Vowel 871 6 3 72,89,172,151,207,180 Ecoli 336 8 8 143,77,2,2,259,20,5,52 表 5 UCI真实数据集上的分群结果比较
Table 5. Comparison of clustering results on UCI real datasets
数据集 算法 纯度 RI ARI NMI WDBC K-means 0.8506 0.7454 0.4811 0.4567 DBSCAN 0.7996 0.6558 0.3191 0.2851 DPC 0.7891 0.6666 0.3133 0.3400 M-CFSFDP 0.8664 0.7681 0.5282 0.5070 MDk-DPC 0.8822 0.7919 0.5773 0.5459 Iris K-means 0.8800 0.8679 0.7028 0.7277 DBSCAN 0.9333 0.8786 0.7063 0.7130 DPC 0.8333 0.8322 0.6334 0.7174 M-CFSFDP 0.9067 0.8923 0.7592 0.8057 MDk-DPC 0.9600 0.9495 0.8858 0.8705 Wine K-means 0.7022 0.7187 0.3711 0.4288 DBSCAN 0.6461 0.6258 0.2897 0.4029 DPC 0.7191 0.7350 0.4070 0.3913 M-CFSFDP 0.7921 0.7739 0.5054 0.5646 MDk-DPC 0.8933 0.8654 0.6990 0.7262 Seeds K-means 0.8762 0.8573 0.6793 0.7023 DBSCAN 0.7476 0.6861 0.2146 0.4083 DPC 0.8905 0.8715 0.7227 0.7126 M-CFSFDP 0.8952 0.8748 0.7170 0.6744 MDk-DPC 0.8952 0.8766 0.7108 0.7245 Vowel K-means 0.5511 0.8013 0.3360 0.4692 DBSCAN 0.6958 0.8165 0.2885 0.4864 DPC 0.5982 0.7852 0.3214 0.4839 M-CFSFDP 0.6705 0.8103 0.3936 0.5475 MDk-DPC 0.7405 0.8328 0.4072 0.5360 Ecoli K-means 0.8006 0.8340 0.5386 0.5771 DBSCAN 0.6637 0.7601 0.3937 0.4518 DPC 0.8065 0.8197 0.5000 0.6039 M-CFSFDP 0.7679 0.8659 0.6913 0.6710 MDk-DPC 0.7887 0.8852 0.7316 0.6971 表 6 空中目标状态信息
Table 6. Air targets status information
序号 x/m y/m z/m 速度/(km·h−1) 航向角/(°) 群组 1 4597 9856 4221 959 90 A 2 4098 10182 4197 934 90 A 3 3092 11210 4213 967 90 A 4 3785 9045 4203 980 90 A 5 2890 8002 4208 942 90 A 6 9013 24345 4127 931 150 B 7 9854 24521 3951 964 150 B 8 9470 23698 4055 954 150 B 9 11013 10132 4195 980 120 C 10 10311 9780 4089 979 120 C -
[1] 郭明. 关于智能化战争的基本认知[J]. 人民论坛·学术前沿, 2021(10): 14-21.GUO M. Basic understandings of the intelligent wars[J]. Frontiers, 2021(10): 14-21(in Chinese). [2] 张绪亮, 张宏军, 綦秀利, 等. 基于改进K-means算法的陆战场机动目标分群方法[J]. 信息技术, 2016, 40(3): 128-131.ZHANG X L, ZHANG H J, QI X L, et al. A clustering method of land battlefield maneuvering targets based on improved K-means algorithm[J]. Information Technology, 2016, 40(3): 128-131(in Chinese). [3] 詹环, 宋爱斌, 罗俊芝, 等. 基于混合属性无监督聚类的作战目标分群[J]. 火力与指挥控制, 2021, 46(12): 166-170. doi: 10.3969/j.issn.1002-0640.2021.12.026ZHAN H, SONG A B, LUO J Z, et al. Operational system target grouping method based on mixed attribute unsupervised clustering[J]. Fire Control & Command Control, 2021, 46(12): 166-170(in Chinese). doi: 10.3969/j.issn.1002-0640.2021.12.026 [4] DUAN Y X, LIU C Y, LI S. Battlefield target grouping by a hybridization of an improved whale optimization algorithm and affinity propagation[J]. IEEE Access, 2021, 9: 46448-46461. doi: 10.1109/ACCESS.2021.3067729 [5] 袁德平, 郑娟毅, 史浩山, 等. 一种多作战编队下的目标编群算法[J]. 计算机科学, 2016, 43(2): 235-238. doi: 10.11896/j.issn.1002-137X.2016.02.049YUAN D P, ZHENG J Y, SHI H S, et al. Target grouping algorithm based on multiple combat formations[J]. Computer Science, 2016, 43(2): 235-238(in Chinese). doi: 10.11896/j.issn.1002-137X.2016.02.049 [6] ESTER M, KRIEGEL H, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]// Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 1996: 226–231. [7] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496. doi: 10.1126/science.1242072 [8] 闫孟达, 杨任农, 王新, 等. 改进cell密度聚类算法在空战目标分群中的应用[J]. 国防科技大学学报, 2021, 43(4): 108-117. doi: 10.11887/j.cn.202104014YAN M D, YANG R N, WANG X, et al. Air combat target grouping based on improved CBSCAN algorithm[J]. Journal of National University of Defense Technology, 2021, 43(4): 108-117(in Chinese). doi: 10.11887/j.cn.202104014 [9] 李伟楠, 章卫国, 史静平, 等. 基于M-CFSFDP算法的战场目标分群方法[J]. 西北工业大学学报, 2018, 36(6): 1121-1128. doi: 10.3969/j.issn.1000-2758.2018.06.013LI W N, ZHANG W G, SHI J P, et al. A battlefield target grouping method based on M-CFSFDP algorithm[J]. Journal of Northwestern Polytechnical University, 2018, 36(6): 1121-1128(in Chinese). doi: 10.3969/j.issn.1000-2758.2018.06.013 [10] 段同乐, 张冬宁. 二叉树多分类SVM在目标分群中的应用[J]. 无线电工程, 2015, 45(6): 88-91.DUAN T L, ZHANG D N. Application of multiclass SVM based on binary tree in target grouping[J]. Radio Engineering, 2015, 45(6): 88-91(in Chinese). [11] 樊振华, 师本慧, 陈金勇, 等. 基于模糊ART划分的目标分群算法[J]. 无线电工程, 2017, 47(9): 27-31. doi: 10.3969/j.issn.1003-3106.2017.09.06FAN Z H, SHI B H, CHEN J Y, et al. A fuzzy ART based target clustering algorithm[J]. Radio Engineering, 2017, 47(9): 27-31(in Chinese). doi: 10.3969/j.issn.1003-3106.2017.09.06 [12] 陶宇, 蒋序平. 基于深度自编码网络的智能目标分群算法[J]. 指挥控制与仿真, 2020, 42(6): 52-58. doi: 10.3969/j.issn.1673-3819.2020.06.009TAO Y, JIANG X P. Intelligent target clustering algorithm based on deep auto-encoder network[J]. Command Control & Simulation, 2020, 42(6): 52-58(in Chinese). doi: 10.3969/j.issn.1673-3819.2020.06.009 [13] WU Z H, LI C, ZHOU F, et al. A new weighted fuzzy C-means clustering approach considering between-cluster separability[J]. Journal of Intelligent & Fuzzy Systems, 2021, 40(1): 1017-1024. [14] REHMAN A U, BELHAOUARI S B. Divide well to merge better: A novel clustering algorithm[J]. Pattern Recognition, 2022, 122: 108305. doi: 10.1016/j.patcog.2021.108305 [15] 马萌. 基于流形距离的聚类算法研究及其应用[D]. 西安: 西安电子科技大学, 2010: 9-21.MA M. The study and the application of clustering algorithm based on manifold distance[D]. Xi’an: Xidian University, 2010: 9-21(in Chinese). [16] CAO X F, QIU B Z, LI X L, et al. Multidimensional balance-based cluster boundary detection for high-dimensional data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(6): 1867-1880. doi: 10.1109/TNNLS.2018.2874458 [17] SAMET H. K-nearest neighbor finding using MaxNearestDist[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(2): 243-252. doi: 10.1109/TPAMI.2007.1182 [18] DAI Q Z, XIONG Z Y, XIE J, et al. A novel clustering algorithm based on the natural reverse nearest neighbor structure[J]. Information Systems, 2019, 84: 1-16. doi: 10.1016/j.is.2019.04.001 [19] XIE J, XIONG Z Y, ZHANG Y F, et al. Density core-based clustering algorithm with dynamic scanning radius[J]. Knowledge-Based Systems, 2018, 142: 58-70. doi: 10.1016/j.knosys.2017.11.025 [20] TONG W N, LIU S, GAO X Z. A density-peak-based clustering algorithm of automatically determining the number of clusters[J]. Neurocomputing, 2021, 458: 655-666. doi: 10.1016/j.neucom.2020.03.125 [21] ZHANG R L, SONG X H, YING S R, et al. CA-CSM: A novel clustering algorithm based on cluster center selection model[J]. Soft Computing, 2021, 25(13): 8015-8033. doi: 10.1007/s00500-021-05835-w