留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相变储能拓扑翅片的性能研究

殷健宝 邢玉明 王仕淞 叶梦岩 王子贤 侯煦

殷健宝,邢玉明,王仕淞,等. 相变储能拓扑翅片的性能研究[J]. 北京航空航天大学学报,2024,50(10):3274-3282 doi: 10.13700/j.bh.1001-5965.2022.0803
引用本文: 殷健宝,邢玉明,王仕淞,等. 相变储能拓扑翅片的性能研究[J]. 北京航空航天大学学报,2024,50(10):3274-3282 doi: 10.13700/j.bh.1001-5965.2022.0803
YIN J B,XING Y M,WANG S S,et al. Study of performance of topological fin for phase change energy storage[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3274-3282 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0803
Citation: YIN J B,XING Y M,WANG S S,et al. Study of performance of topological fin for phase change energy storage[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):3274-3282 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0803

相变储能拓扑翅片的性能研究

doi: 10.13700/j.bh.1001-5965.2022.0803
基金项目: 航空科学基金(20172851018)
详细信息
    通讯作者:

    E-mail:xym505@126.com

  • 中图分类号: V221+.8;V221+.92;V228.3;V245.3+43

Study of performance of topological fin for phase change energy storage

Funds: Aeronautical Science Foundation of China (20172851018)
More Information
  • 摘要:

    为强化翅片管式储能系统的传热速率和相变材料域的温度均匀性,基于带惩罚的固体各向同性材料方法,以两种分形结构和对应翅片体积分数为参数,采用月桂酸为相变材料,进行了拓扑优化设计,并对比研究了拓扑优化的强化导热效果和温度均匀性。研究表明:壁面温度20 ℃时,拓扑优化有更好的导热效果,比分形优化分别减少21.18%和12.68%的总凝固时间,相变材料温度最高降低了7.33 ℃和4.30 ℃,平均降低了0.98 ℃和3.85 ℃;拓扑优化也具备更好的温度均匀性,相变材料平均方差分别为对应分形的33.38%和72.13%;壁温偏离拓扑的设计参数时,其热性能也基本未发生改变。以上结果传导为翅片设计提供了一定参考。

     

  • 图 1  拓扑优化的几何尺寸和设计域确定示意

    Figure 1.  Schematic diagram of geometry size and design domain determination for topology optimization

    图 2  树状分形的各级尺寸示意

    Figure 2.  Schematic diagram of dimensions at each level of a tree fractal

    图 3  GCMMA算法流程

    Figure 3.  Flow chart of GCMMA algorithm

    图 4  拓扑优化结果(ri=15 mm, ro=60 mm)

    Figure 4.  Topology optimization results (ri=15 mm, ro=60 mm)

    图 5  拓扑优化结果(ri=10 mm, ro=30 mm)

    Figure 5.  Topology optimization results (ri=10 mm, ro=30 mm)

    图 6  网格无关性验证和时间步长无关性验证

    Figure 6.  Grid independent verification and time step independent verification

    图 7  模型有效性验证

    Figure 7.  Validation of model

    图 8  拓扑优化和Huang的分形优化液相质量分数云图(左半)和温度云图(右半)

    Figure 8.  Liquid fraction contour (left half) and Temperature contour (right half) of topology optimization and Huang’s fractal optimization

    图 9  拓扑优化和Huang分形优化的液相分数对比

    Figure 9.  Comparison diagram of liquid fraction between topology optimization and Huang's fractal optimization

    图 10  拓扑优化和Huang分形优化的PCM温度方差与温度对比

    Figure 10.  Comparison diagram of σPCM2 and TPCM between topology optimization and Huang's fractal optimization

    图 11  拓扑优化和Luo的分形优化液相质量分数云图(左半)和温度云图(右半)

    Figure 11.  Liquid fraction contour (left half) and temperature contour (right half) of topology optimization and Luo’s fractal optimization

    图 12  拓扑优化和Luo分形优化的液相分数对比

    Figure 12.  Comparison diagram of liquid fraction between topology optimization and Luo's fractal optimization

    图 13  拓扑优化和Luo分形优化的PCM温度方差与温度对比

    Figure 13.  Comparison diagram of σPCM2 and TPCM between topology optimization and Luo's fractal optimization

    图 14  拓扑和分形优化在不同壁面温度下的液相质量分数

    Figure 14.  Liquid fraction of topological and fractal optimization at different wall temperatures

    图 15  拓扑和分形优化在不同壁面温度下的PCM温度方差

    Figure 15.  σPCM2 of topological and fractal optimization at different wall temperatures

    表  1  树状分形的尺寸

    Table  1.   Dimensions of a tree fractal

    文献 L0/mm L1/mm L2/mm δ1/mm δ2/mm δ3/mm
    文献[24] 14.00 15.40 16.90 4.00 2.00 1.00
    文献[25] 9.78 6.91 4.88 0.71 0.50 0.36
    下载: 导出CSV

    表  2  材料热物性参数

    Table  2.   Thermal properties of material

    ρ/(kg∙m−3 cp/(kJ∙kg−1∙℃−1 k/(W∙m−1∙℃−1 L/(kJ∙kg−1
    (月桂酸)
    Tm/℃
    (月桂酸)
    月桂酸 月桂酸 月桂酸
    1007(固)/862(液) 2730 1.7(固)/2.4(液) 0.896 0.22(固)/0.147(液) 167 178 42~48
    下载: 导出CSV
  • [1] KABIR M, GEMEDA T, PRELLER E, et al. Design and development of a PCM-based two-phase heat exchanger manufactured additively for spacecraft thermal management systems[J]. International Journal of Heat and Mass Transfer, 2021, 180: 121782. doi: 10.1016/j.ijheatmasstransfer.2021.121782
    [2] TATSIDJODOUNG P, LE PIERRÈS N, LUO L G. A review of potential materials for thermal energy storage in building applications[J]. Renewable and Sustainable Energy Reviews, 2013, 18: 327-349. doi: 10.1016/j.rser.2012.10.025
    [3] WANG S S, XING Y M, HAO Z L, et al. Experimental study on the thermal performance of PCMs based heat sink using higher alcohol/graphite foam[J]. Applied Thermal Engineering, 2021, 198: 117452. doi: 10.1016/j.applthermaleng.2021.117452
    [4] HOU X, XING Y M, HAO Z L. Multi-objective optimization of a composite phase change material-based heat sink under non-uniform discrete heating[J]. Applied Thermal Engineering, 2021, 197: 117435. doi: 10.1016/j.applthermaleng.2021.117435
    [5] JÄCKEL R, TAPIA F, GUTIÉRREZ-URUETA G, et al. Design of an aeronautic pitot probe with a redundant heating system incorporating phase change materials[J]. Flow Measurement and Instrumentation, 2020, 76: 101817. doi: 10.1016/j.flowmeasinst.2020.101817
    [6] SHANMUGASUNDARAM V, RAMALINGAM M, DONOVAN B, et al. Aircraft based pulsed power system thermal management options with energy storage[C]//Proceedings of the 4th International Energy Conversion Engineering Conference and Exhibit (IECEC). Reston: AIAA, 2006: AIAA2006-4025.
    [7] SHANMUGASUNDARAM V, RAMALINGAM M, DONOVAN B. Thermal management system with energy storage for an airborne laser power system application[C]//Proceedings of the 5th International Energy Conversion Engineering Conference and Exhibit (IECEC). Reston: AIAA, 2007: AIAA2007-4817.
    [8] VELRAJ R, SEENIRAJ R, HAFNER B, et al. Heat transfer enhancement in a latent heat storage system[J]. Solar Energy, 1999, 65: 171-180. doi: 10.1016/S0038-092X(98)00128-5
    [9] BABAPOOR A, AZIZI M, KARIMI G. Thermal management of a Li-ion battery using carbon fiber-PCM composites[J]. Applied Thermal Engineering, 2015, 82(2): 281-290.
    [10] OPOLOT M, ZHAO C R, LIU M, et al. Influence of cascaded graphite foams on thermal performance of high temperature phase change material storage systems[J]. Applied Thermal Engineering, 2020, 180: 115618. doi: 10.1016/j.applthermaleng.2020.115618
    [11] ZHANG H, LI X Y, LIU L Q, et al. Experimental investigation on paraffin melting in high porosity copper foam under centrifugal accelerations[J]. Applied Thermal Engineering, 2020, 178: 115504. doi: 10.1016/j.applthermaleng.2020.115504
    [12] ALGARNI S, MELLOULI S, ALQAHTANI T, et al. Experimental investigation of an evacuated tube solar collector incorporating nano-enhanced PCM as a thermal booster[J]. Applied Thermal Engineering, 2020, 180: 115831. doi: 10.1016/j.applthermaleng.2020.115831
    [13] XU H T, WANG N, ZHANG C Y, et al. Optimization on the melting performance of triplex-layer PCMs in a horizontal finned shell and tube thermal energy storage unit[J]. Applied Thermal Engineering, 2020, 176: 115409. doi: 10.1016/j.applthermaleng.2020.115409
    [14] MAHDI J M, LOHRASBI S, GANJI D D, et al. Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger[J]. International Journal of Heat and Mass Transfer, 2018, 124: 663-676. doi: 10.1016/j.ijheatmasstransfer.2018.03.095
    [15] KATESHIA J, LAKHERA V J. Analysis of solar still integrated with phase change material and pin fins as absorbing material[J]. Journal of Energy Storage, 2021, 35: 102292. doi: 10.1016/j.est.2021.102292
    [16] AGYENIM F, HEWITT N, EAMES P, et al. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)[J]. Renewable and Sustainable Energy Reviews, 2010, 14(2): 615-628. doi: 10.1016/j.rser.2009.10.015
    [17] SHEIKHOLESLAMI M, LOHRASBI S, GANJI D D. Numerical analysis of discharging process acceleration in LHTESS by immersing innovative fin configuration using finite element method[J]. Applied Thermal Engineering, 2016, 107: 154-166. doi: 10.1016/j.applthermaleng.2016.06.158
    [18] YU C, WU S C, HUANG Y P, et al. Charging performance optimization of a latent heat storage unit with fractal tree-like fins[J]. Journal of Energy Storage, 2020, 30: 101498. doi: 10.1016/j.est.2020.101498
    [19] BENDSØE M P. Optimal shape design as a material distribution problem[J]. Structural Optimization, 1989, 1(4): 193-202. doi: 10.1007/BF01650949
    [20] BRUNS T E. Topology optimization of convection-dominated, steady-state heat transfer problems[J]. International Journal of Heat and Mass Transfer, 2007, 50(15-16): 2859-2873. doi: 10.1016/j.ijheatmasstransfer.2007.01.039
    [21] PIZZOLATO A, SHARMA A, MAUTE K, et al. Topology optimization for heat transfer enhancement in Latent Heat Thermal Energy Storage[J]. International Journal of Heat and Mass Transfer, 2017, 113: 875-888. doi: 10.1016/j.ijheatmasstransfer.2017.05.098
    [22] PIZZOLATO A, SHARMA A, MAUTE K, et al. Design of effective fins for fast PCM melting and solidification in shell-and-tube latent heat thermal energy storage through topology optimization[J]. Applied Energy, 2017, 208: 210-227. doi: 10.1016/j.apenergy.2017.10.050
    [23] TIAN Y, LIU X L, XU Q, et al. Bionic topology optimization of fins for rapid latent heat thermal energy storage[J]. Applied Thermal Engineering, 2021, 194: 117104. doi: 10.1016/j.applthermaleng.2021.117104
    [24] HUANG Y P, LIU X D. Charging and discharging enhancement of a vertical latent heat storage unit by fractal tree-shaped fins[J]. Renewable Energy, 2021, 174: 199-217. doi: 10.1016/j.renene.2021.04.066
    [25] LUO X M, GU J A, MA H Q, et al. Numerical study on enhanced melting heat transfer of PCM by the combined fractal fins[J]. Journal of Energy Storage, 2022, 45: 103780. doi: 10.1016/j.est.2021.103780
    [26] ZHOU M, ROZVANY G. The COC algorithm, Part II: Topological, geometrical and generalized shape optimization[J]. Computer Methods in Applied Mechanics and Engineering, 1991, 89(1-3): 309-336. doi: 10.1016/0045-7825(91)90046-9
    [27] LAZAROV B S, SIGMUND O. Filters in topology optimization based on Helmholtz-type differential equations[J]. International Journal for Numerical Methods in Engineering, 2011, 86(6): 765-781. doi: 10.1002/nme.3072
    [28] WANG F W, LAZAROV B S, SIGMUND O. On projection methods, convergence and robust formulations in topology optimization[J]. Structural and Multidisciplinary Optimization, 2011, 43(6): 767-784. doi: 10.1007/s00158-010-0602-y
    [29] Guo L H, Tang W C. Deep Study and Improvement of the Globally Convergent Version of MMA[J]. Applied Mechanics and Materials, 2014, 635: 1666-1670.
    [30] SHMUELI H, ZISKIND G, LETAN R. Melting in a vertical cylindrical tube: numerical investigation and comparison with experiments[J]. International Journal of Heat and Mass Transfer, 2010, 53(19-20): 4082-4091. doi: 10.1016/j.ijheatmasstransfer.2010.05.028
    [31] ISMAIL K A R, ALVES C L F, MODESTO M S. Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder[J]. Applied Thermal Engineering, 2001, 21(1): 53-77. doi: 10.1016/S1359-4311(00)00002-8
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  759
  • HTML全文浏览量:  107
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-23
  • 录用日期:  2023-02-16
  • 网络出版日期:  2023-03-08
  • 整期出版日期:  2024-10-31

目录

    /

    返回文章
    返回
    常见问答