留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于卷积神经网络的多偏移干涉相位滤波方法

李涵 钟何平 张鹏 唐劲松

李涵,钟何平,张鹏,等. 基于卷积神经网络的多偏移干涉相位滤波方法[J]. 北京航空航天大学学报,2024,50(6):2043-2050 doi: 10.13700/j.bh.1001-5965.2022.0805
引用本文: 李涵,钟何平,张鹏,等. 基于卷积神经网络的多偏移干涉相位滤波方法[J]. 北京航空航天大学学报,2024,50(6):2043-2050 doi: 10.13700/j.bh.1001-5965.2022.0805
LI H,ZHONG H P,ZHANG P,et al. Multi-shift interferometric phase filtering method based on convolutional neural network[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):2043-2050 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0805
Citation: LI H,ZHONG H P,ZHANG P,et al. Multi-shift interferometric phase filtering method based on convolutional neural network[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(6):2043-2050 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0805

基于卷积神经网络的多偏移干涉相位滤波方法

doi: 10.13700/j.bh.1001-5965.2022.0805
基金项目: 国家自然科学基金(42176187,61671461)
详细信息
    通讯作者:

    E-mail:zheping525@sohu.com

  • 中图分类号: P237;TP751

Multi-shift interferometric phase filtering method based on convolutional neural network

Funds: National Natural Science Foundation of China (42176187,61671461)
More Information
  • 摘要:

    为提升干涉信号处理中相位滤波的效果,提出了一种基于卷积神经网络的多偏移干涉相位滤波方法。利用干涉相位噪声模型解释了相位偏移原理,并根据相位偏移原理构建多个卷积神经网络去噪器,利用其分别对不同偏移的干涉相位进行滤波,生成多个去噪相位。利用神经网络计算像素权值,对多个去噪结果进行融合,进而获得质量更好的相位滤波结果。仿真的数据和真实的数据试验表明,相较于传统方法,所提方法具有更好的细节保持能力,并且所得结果的均方根误差和留数点数量更低。

     

  • 图 1  真实相位和干涉相位

    Figure 1.  True and interfering phases

    图 2  干涉相位实部期望与标准差关系

    Figure 2.  Expectation versus standard deviation curve for the real part of the interferometric phase

    图 3  原始和偏移后的仿真图在32×32的不重叠窗口采样下均值与标准差分布

    Figure 3.  Mean vs. standard deviation distribution of the original and offset simulation plots sampled in a 32×32non-overlapping window

    图 4  多偏移相位去噪网络结构图

    Figure 4.  Multi - shift phase denoising network structure

    图 5  Resblock结构示意图

    Figure 5.  The structure of Resblock

    图 6  像素加权网络流程图

    Figure 6.  Pixel-weighted network flow chart

    图 7  归一化操作示意图

    Figure 7.  Diagram of normalization operation

    图 8  仿真数据在复数域的实部期望与标准差分布

    Figure 8.  Scatter plot of the mean and standard deviation of the real part of the simulated data in the complex domain

    图 9  相干系数为0.9时的对比实验结果

    Figure 9.  Comparative experimental results for the case of a coherence factor of 0.9

    图 10  相干系数为0.9时的细节对比

    Figure 10.  Comparison of details of experimental results when the coherence coefficient is 0.9

    图 11  相干系数为0.9时本文方法子滤波器输出与融合结果

    Figure 11.  Output and fusion results of each sub-filter of this paper's method with a coherence factor of 0.9

    图 12  相干系数为0.6时的对比实验结果

    Figure 12.  Comparative experimental results for the case of a coherence factor of 0.6

    图 13  相干系数为0.6时的细节对比

    Figure 13.  Comparison of details of experimental results when the coherence coefficient is 0.6

    图 14  InSAR数据对比实验结果

    Figure 14.  InSAR data comparison experiment results

    表  1  Resblock ($x,y,{\textit{z}} $)模块参数

    Table  1.   Parameters of Resblock ($x,y,{\textit{z}} $)

    卷积层 卷积核大小 步长 输入通道 输出通道
    1 7×7 1×1 x y
    2 7×7 1×1 y z
    3 7×7 1×1 x z
     注:无偏置。
    下载: 导出CSV

    表  2  子去噪网络参数

    Table  2.   Parameters of denoising sub-network

    序号 网络模块 序号 网络模块
    1 Resblock(2,4,8) 6 LeakyReLU(1/5.5)
    2 LeakyReLU(1/5.5) 7 Resblock(32,16,8)
    3 Resblock(8,16,32) 8 LeakyReLU(1/5.5)
    4 LeakyReLU(1/5.5) 9 Resblock(8,4,2)
    5 Resblock(32,64,32) 10 Tanh
    下载: 导出CSV

    表  3  各类滤波方法效果对比

    Table  3.   Effect comparison of various filtering methods

    方法 RMSE 留数点
    相干系数为0.9 相干系数为0.6
    回转均值滤波 0.5116 0.5888 84 76
    BM3D滤波 0.2659 0.5556 307 298
    加权回转中值 0.5041 0.5682 87 80
    Goldstein滤波 0.3405 0.3946 31 27
    本文方法 0.1110 0.1909 8 3
     注:RMSE是仿真数据,留数点是实测数据。
    下载: 导出CSV
  • [1] ZHOU L F, YU H W, LAN Y, et al. Artificial intelligence in interferometric synthetic aperture radar phase unwrapping: a review[J]. IEEE Geoscience and Remote Sensing Magazine, 2021, 9(2): 10-28. doi: 10.1109/MGRS.2021.3065811
    [2] XU G, GAO Y D, LI J W, et al. InSAR phase denoising: A review of current technologies and future directions[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(2): 64-82. doi: 10.1109/MGRS.2019.2955120
    [3] EYRE T S, SAMSONOV S, FENG W P, et al. InSAR data reveal that the largest hydraulic fracturing-induced earthquake in Canada, to date, is a slow-slip event[J]. Scientific Reports, 2022, 12: 2043. doi: 10.1038/s41598-022-06129-3
    [4] WU P C, WEI M M, D’HONDT S. Subsidence in coastal cities throughout the world observed by InSAR[J]. Geophysical Research Letters, 2022,49(7):e98477.
    [5] LEE J S, HOPPEL K W, MANGO S A, et al. Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5): 1017-1028. doi: 10.1109/36.312890
    [6] GAO Y D, ZHANG S B, ZHANG K F, et al. Frequency domain filtering SAR interferometric phase noise using the amended matrix pencil model[J]. Computer Modeling in Engineering & Sciences, 2019, 119(2): 349-363.
    [7] DELEDALLE C A, DENIS L, TUPIN F. NL-InSAR: Nonlocal interferogram estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(4): 1441-1452. doi: 10.1109/TGRS.2010.2076376
    [8] DANIELYAN A, KATKOVNIK V, EGIAZARIAN K. BM3D frames and variational image deblurring[J]. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing, Society, 2012, 21(4): 1715-1728. doi: 10.1109/TIP.2011.2176954
    [9] GOLDSTEIN R M, WERNER C L. Radar interferogram filtering for geophysical applications[J]. Geophysical Research Letters, 1998, 25(21): 4035-4038.
    [10] YAN K, YU Y J, SUN T, et al. Wrapped phase denoising using convolutional neural networks[J]. Optics and Lasers in Engineering, 2020, 128: 105999. doi: 10.1016/j.optlaseng.2019.105999
    [11] GOLDSTEIN R M, ENGELHARDT H, KAMB B, et al. Satellite radar interferometry for monitoring ice sheet motion: Application to an antarctic ice stream[J]. Science, 1993, 262(5139): 1525-1530. doi: 10.1126/science.262.5139.1525
    [12] LEE J S, PAPATHANASSIOU K P, AINSWORTH T L, et al. A new technique for noise filtering of SAR interferometric phase images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1456-1465. doi: 10.1109/36.718849
    [13] LOPEZ-MARTINEZ C, FABREGAS X. Modeling and reduction of SAR interferometric phase noise in the wavelet domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(12): 2553-2566. doi: 10.1109/TGRS.2002.806997
    [14] ZHANG J H, ZHU Y G, LI W Y, et al. DRNet: a deep neural network with multi-layer residual blocks improves image denoising[J]. IEEE Access, 2021, 9: 79936-79946. doi: 10.1109/ACCESS.2021.3084951
    [15] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386
    [16] LANGNER A, HIRATA Y, SAITO H, et al. Spectral normalization of SPOT 4 data to adjust for changing leaf phenology within seasonal forests in Cambodia[J]. Remote Sensing of Environment, 2014, 143: 122-130. doi: 10.1016/j.rse.2013.12.012
    [17] BERA S, SHRIVASTAVA V K. Analysis of various optimizers on deep convolutional neural network model in the application of hyperspectral remote sensing image classification[J]. International Journal of Remote Sensing, 2020, 41(7): 2664-2683. doi: 10.1080/01431161.2019.1694725
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  186
  • HTML全文浏览量:  68
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-23
  • 录用日期:  2023-01-17
  • 网络出版日期:  2023-02-15
  • 整期出版日期:  2024-06-27

目录

    /

    返回文章
    返回
    常见问答