Numerical simulation investigation on water surface skipping motion characteristics of sea-skimming projectile
-
摘要:
水面滑跳运动是一种飞行体在近水面运动时底部反复触水并被弹起的运动过程,该运动方式可以提高远程对海打击导弹在末端近水面无动力运动时的航程和机动能力。为研究导弹的水面滑跳运动特性,通过求解非定常Navier-Stokes方程和Realizable
k-ε 湍流模型,结合重叠网格技术,采用VOF方法捕捉空气和水之间的自由液面变化,通过六自由度方程模拟刚体运动,对典型导弹外形水面滑跳运动过程进行模拟研究,给出并分析了导弹一次水面滑跳过程的运动参数和表面压力变化。结果表明:根据水面滑跳过程中导弹姿态和相对水面位置的变化特点,可将导弹水面滑跳运动过程分为入水前空中飞行段、第1次触水弹起段、近水面滑行段、第2次触水滑行段、滑跳出水飞行段5个阶段;第1次触水过程中,船尾段受到水面冲击被迅速弹离水面,同时使弹体低头,导弹整体仍向下朝水面运动;第2次触水过程中,导弹下表面大面积拍击水面,不仅产生较大的水面冲击力,且产生使弹体抬头的力矩,在向上冲击力和抬头力矩作用下,导弹被抬升滑跳出水面。船尾收缩段产生的抬头力矩及导弹前端触水处产生的冲击载荷共同作用使得导弹完成水面滑跳过程。Abstract:Water surface skipping is a kind of motion in which the bottom of the aircraft touches the water surface and bounces up repeatedly when it moves near the water surface. This motion can improve the unpowered range and maneuverability of the long-range projectile near the water surface. This paper uses the VOF method to capture the change in the water surface, the overset grid, and the equation of six degrees of freedom to simulate the rigid body motion in order to study the characteristics of projectile water surface skipping. This is done by solving the unsteady Navier-Stokes equation and the Realizable
k -ε model. According to the change of projectile attitude and relative water surface position, the water surface skipping motion process of the projectile is divided into five stages. The process of the projectile sliding on the water surface is simulated. The findings indicate that there are five stages in the process of projectile water surface sliding: the air flight prior to contact with the water, the first water contact and bounce, the near-water surface gliding, the second water contact and sliding out of the water. These stages are based on changes in the projectile’s attitude and relative position to the water surface. The first time, the stern of the projectile touches the water and quickly bounces up from the water surface by the impact of the water surface, making the projectile pitch down. In this process, the projectile still moves toward the water surface. During the second water contact, the lower surface of the projectile slaps the water surface in a large area. The projectile is not only subjected to a large impact force on the water surface but also subjected to a nose-up moment. Under the lift impact force and the nose-up moment, the projectile glides out of the water surface. The combined effect of the lift torque generated by the stern of the projectile and the impact load generated at the water contact point of the projectile enables the projectile to complete the water surface skipping process. -
-
[1] BOCQUET L. The physics of stone skipping[J]. American Journal of Physics, 2003, 71(2): 150-155. doi: 10.1119/1.1519232 [2] ROSELLINI L, HERSEN F, CLANET C, et al. Skipping stones[J]. Journal of Fluid Mechanics, 2005, 543: 137. doi: 10.1017/S0022112005006373 [3] CLANET C, HERSEN F, BOCQUET L. Secrets of successful stone-skipping[J]. Nature, 2004, 427: 29. doi: 10.1038/427029a [4] NAGAHIRO S I, HAYAKAWA Y. Theoretical and numerical approach to “magic angle” of stone skipping[J]. Physical Review Letters, 2005, 94(17): 174501. doi: 10.1103/PhysRevLett.94.174501 [5] 侯东伯. 运动体触水滑跳过程运动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.HOU D B. Research on kinematic characteristics of moving object during water-skipping[D]. Harbin: Harbin Institute of Technology, 2020(in Chinese). [6] 付晓琴, 李阳辉, 卢昱锦, 等. 二维平板水漂运动数值模拟[J]. 航空学报, 2021, 42(6): 124351.FU X Q, LI Y H, LU Y J, et al. Numerical simulation of two-dimensional plate skipping[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124351(in Chinese). [7] 雷娟棉, 解文洋, 于勇, 等. 圆盘水漂运动特性数值模拟研究[J]. 北京理工大学学报, 2021, 41(7): 687-695.LEI J M, XIE W Y, YU Y, et al. Study on numerical simulation of skipping stone movement characteristics[J]. Transactions of Beijing Institute of Technology, 2021, 41(7): 687-695(in Chinese). [8] LI C H, WANG C, WEI Y J, et al. Numerical investigation on the cavity dynamics and deviation characteristics of skipping stones[J]. Journal of Fluids and Structures, 2021, 104: 103301. doi: 10.1016/j.jfluidstructs.2021.103301 [9] TANG J, ZHAO K, CHEN H T, et al. Trajectory and attitude study of a skipping stone[J]. Physics of Fluids, 2021, 33(4): 043316. doi: 10.1063/5.0040158 [10] 孙士明, 陈玮琪, 王宝寿, 等. 航行体近水面滑跳运动试验研究[J]. 数字海洋与水下攻防, 2019, 2(2): 79-83.SUN S M, CHEN W Q, WANG B S, et al. Experimental research on near-water-surface skipping motion of vehicle[J]. Digital Ocean & Underwater Warfare, 2019, 2(2): 79-83(in Chinese). [11] 田北晨, 刘涛涛, 吴钦, 等. 跨介质飞行器触水滑跳运动特性数值模拟[J]. 兵工学报, 2022, 43(3): 586-598.TIAN B C, LIU T T, WU Q, et al. Numerical simulation on kinematic characteristics of trans-media aircraft during water-skipping[J]. Acta Armamentarii, 2022, 43(3): 586-598(in Chinese). [12] 郭保东, 屈秋林, 刘沛清, 等. 混合翼身布局客机 SAX-40 水上迫降力学性能数值研究[J]. 航空学报, 2013, 34(11): 2443-2451.GUO B D, QU Q L, LIU P Q, et al. Ditching performance of silent aircraft SAX-40 in hybrid wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11): 2443-2451(in Chinese). [13] 赵芸可, 屈秋林, 刘沛清. 水上飞机水面降落全过程力学特性数值研究[J]. 北京航空航天大学学报, 2020,46(4):830-838.ZHAO Y K, QU Q L, LIU P Q. Numerical study on mechanical properties of seaplane in whole water surface landing process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 830-838(in Chinese). [14] BENSCH L, SHIGUNOV V, BEUCK G, et al. Planned ditching simulation of a transport airplane[C]//KRASH Users’ Seminar. Phoenix: [s. n.], 2001. [15] STRECKWALL H, LINDENAU O, BENSCH L. Aircraft ditching: A free surface/free motion problem[J]. Archives of Civil and Mechanical Engineering, 2007, 7(3): 177-190. doi: 10.1016/S1644-9665(12)60025-9 [16] DELSART D, LANGRAND B, VAGNOT A. Evaluation of a Euler/Lagrange coupling method for the ditching simulation of helicopter structures[C]//Proceedings of the 5th International Conference on Fluid Structure Interaction. Southampton: WIT Press, 2009, 105: 259-268. [17] QU Q L, HU M X, GUO H, et al. Study of ditching characteristics of transport aircraft by global moving mesh method[J]. Journal of Aircraft, 2015, 52(5): 1550-1558. doi: 10.2514/1.C032993 [18] 吴宗成, 黄波恩, 吴亚聪. 滑移动网格在波浪水面迫降数值模拟中的应用[J]. 哈尔滨工业大学学报, 2019, 51(1): 80-86.WU Z C, HUANG B E, WU Y C. Application of sliding dynamic grid to wavy water ditching simulation[J]. Journal of Harbin Institute of Technology, 2019, 51(1): 80-86(in Chinese). [19] 杨晓彬, 许国冬. 基于重叠网格法的飞机水上降落水动力砰击载荷研究[J]. 振动与冲击, 2020, 39(2): 57-63.YANG X B, XU G D. Identification of hydrodynamic impact loads during the airplane ditching based on overset grid method[J]. Journal of Vibration and Shock, 2020, 39(2): 57-63(in Chinese).