留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掠海导弹触水滑跳运动特性数值模拟研究

雷娟棉 吴志翔 解文洋

雷娟棉,吴志翔,解文洋. 掠海导弹触水滑跳运动特性数值模拟研究[J]. 北京航空航天大学学报,2024,50(10):2975-2983 doi: 10.13700/j.bh.1001-5965.2022.0813
引用本文: 雷娟棉,吴志翔,解文洋. 掠海导弹触水滑跳运动特性数值模拟研究[J]. 北京航空航天大学学报,2024,50(10):2975-2983 doi: 10.13700/j.bh.1001-5965.2022.0813
LEI J M,WU Z X,XIE W Y. Numerical simulation investigation on water surface skipping motion characteristics of sea-skimming projectile[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):2975-2983 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0813
Citation: LEI J M,WU Z X,XIE W Y. Numerical simulation investigation on water surface skipping motion characteristics of sea-skimming projectile[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):2975-2983 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0813

掠海导弹触水滑跳运动特性数值模拟研究

doi: 10.13700/j.bh.1001-5965.2022.0813
基金项目: 国家部委基金(6141B012871)
详细信息
    通讯作者:

    E-mail:leijm@bit.edu.cn

  • 中图分类号: O359+.1;V19

Numerical simulation investigation on water surface skipping motion characteristics of sea-skimming projectile

Funds: National Ministries and Commissions Foundation of China (6141B012871)
More Information
  • 摘要:

    水面滑跳运动是一种飞行体在近水面运动时底部反复触水并被弹起的运动过程,该运动方式可以提高远程对海打击导弹在末端近水面无动力运动时的航程和机动能力。为研究导弹的水面滑跳运动特性,通过求解非定常Navier-Stokes方程和Realizable k-ε湍流模型,结合重叠网格技术,采用VOF方法捕捉空气和水之间的自由液面变化,通过六自由度方程模拟刚体运动,对典型导弹外形水面滑跳运动过程进行模拟研究,给出并分析了导弹一次水面滑跳过程的运动参数和表面压力变化。结果表明:根据水面滑跳过程中导弹姿态和相对水面位置的变化特点,可将导弹水面滑跳运动过程分为入水前空中飞行段、第1次触水弹起段、近水面滑行段、第2次触水滑行段、滑跳出水飞行段5个阶段;第1次触水过程中,船尾段受到水面冲击被迅速弹离水面,同时使弹体低头,导弹整体仍向下朝水面运动;第2次触水过程中,导弹下表面大面积拍击水面,不仅产生较大的水面冲击力,且产生使弹体抬头的力矩,在向上冲击力和抬头力矩作用下,导弹被抬升滑跳出水面。船尾收缩段产生的抬头力矩及导弹前端触水处产生的冲击载荷共同作用使得导弹完成水面滑跳过程。

     

  • 图 1  导弹几何外形参数及计算条件示意图

    Figure 1.  Schematic diagram of geometry parameters and calculation conditions of projectile

    图 2  圆盘运动参数和计算域示意图

    Figure 2.  Schematic diagram of disk motion parameters and calculation domain

    图 3  圆盘水平速度随时间变化

    Figure 3.  Variation of horizontal velocity of disk with time

    图 4  计算域边界条件示意图

    Figure 4.  Schematic diagram of boundary conditions of calculation domain

    图 5  导弹周围网格示意图

    Figure 5.  Schematic diagram of grid around projectile

    图 6  导弹质心距水面高度和攻角随时间变化

    Figure 6.  Variation of centroid height above water surface and angle of attack of projectile with time

    图 7  一次滑跳过程中导弹相对水面位置变化

    Figure 7.  Position of projectile relative to water surface during a skipping motion

    图 8  导弹最低点距水面高度和垂向速度随时间变化

    Figure 8.  Variation of height from the lowest point of projectile to water surface and vertical velocity with time

    图 9  攻角和俯仰角速度随时间变化

    Figure 9.  Variation of angle of attack and pitch angular velocity with time

    图 10  导弹垂直和水平方向受力随时间变化

    Figure 10.  Variation of force on projectile in vertical and horizontal directions with time

    图 11  第1次触水弹起段导弹底部压力云图

    Figure 11.  Pressure contour at bottom of projectile under bounce stage of the first contact with water

    图 12  第2次触水滑行段导弹底部压力云图

    Figure 12.  Pressure contour at bottom of projectile under bounce stage of the second contact with water

  • [1] BOCQUET L. The physics of stone skipping[J]. American Journal of Physics, 2003, 71(2): 150-155. doi: 10.1119/1.1519232
    [2] ROSELLINI L, HERSEN F, CLANET C, et al. Skipping stones[J]. Journal of Fluid Mechanics, 2005, 543: 137. doi: 10.1017/S0022112005006373
    [3] CLANET C, HERSEN F, BOCQUET L. Secrets of successful stone-skipping[J]. Nature, 2004, 427: 29. doi: 10.1038/427029a
    [4] NAGAHIRO S I, HAYAKAWA Y. Theoretical and numerical approach to “magic angle” of stone skipping[J]. Physical Review Letters, 2005, 94(17): 174501. doi: 10.1103/PhysRevLett.94.174501
    [5] 侯东伯. 运动体触水滑跳过程运动特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    HOU D B. Research on kinematic characteristics of moving object during water-skipping[D]. Harbin: Harbin Institute of Technology, 2020(in Chinese).
    [6] 付晓琴, 李阳辉, 卢昱锦, 等. 二维平板水漂运动数值模拟[J]. 航空学报, 2021, 42(6): 124351.

    FU X Q, LI Y H, LU Y J, et al. Numerical simulation of two-dimensional plate skipping[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(6): 124351(in Chinese).
    [7] 雷娟棉, 解文洋, 于勇, 等. 圆盘水漂运动特性数值模拟研究[J]. 北京理工大学学报, 2021, 41(7): 687-695.

    LEI J M, XIE W Y, YU Y, et al. Study on numerical simulation of skipping stone movement characteristics[J]. Transactions of Beijing Institute of Technology, 2021, 41(7): 687-695(in Chinese).
    [8] LI C H, WANG C, WEI Y J, et al. Numerical investigation on the cavity dynamics and deviation characteristics of skipping stones[J]. Journal of Fluids and Structures, 2021, 104: 103301. doi: 10.1016/j.jfluidstructs.2021.103301
    [9] TANG J, ZHAO K, CHEN H T, et al. Trajectory and attitude study of a skipping stone[J]. Physics of Fluids, 2021, 33(4): 043316. doi: 10.1063/5.0040158
    [10] 孙士明, 陈玮琪, 王宝寿, 等. 航行体近水面滑跳运动试验研究[J]. 数字海洋与水下攻防, 2019, 2(2): 79-83.

    SUN S M, CHEN W Q, WANG B S, et al. Experimental research on near-water-surface skipping motion of vehicle[J]. Digital Ocean & Underwater Warfare, 2019, 2(2): 79-83(in Chinese).
    [11] 田北晨, 刘涛涛, 吴钦, 等. 跨介质飞行器触水滑跳运动特性数值模拟[J]. 兵工学报, 2022, 43(3): 586-598.

    TIAN B C, LIU T T, WU Q, et al. Numerical simulation on kinematic characteristics of trans-media aircraft during water-skipping[J]. Acta Armamentarii, 2022, 43(3): 586-598(in Chinese).
    [12] 郭保东, 屈秋林, 刘沛清, 等. 混合翼身布局客机 SAX-40 水上迫降力学性能数值研究[J]. 航空学报, 2013, 34(11): 2443-2451.

    GUO B D, QU Q L, LIU P Q, et al. Ditching performance of silent aircraft SAX-40 in hybrid wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11): 2443-2451(in Chinese).
    [13] 赵芸可, 屈秋林, 刘沛清. 水上飞机水面降落全过程力学特性数值研究[J]. 北京航空航天大学学报, 2020,46(4):830-838.

    ZHAO Y K, QU Q L, LIU P Q. Numerical study on mechanical properties of seaplane in whole water surface landing process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 830-838(in Chinese).
    [14] BENSCH L, SHIGUNOV V, BEUCK G, et al. Planned ditching simulation of a transport airplane[C]//KRASH Users’ Seminar. Phoenix: [s. n.], 2001.
    [15] STRECKWALL H, LINDENAU O, BENSCH L. Aircraft ditching: A free surface/free motion problem[J]. Archives of Civil and Mechanical Engineering, 2007, 7(3): 177-190. doi: 10.1016/S1644-9665(12)60025-9
    [16] DELSART D, LANGRAND B, VAGNOT A. Evaluation of a Euler/Lagrange coupling method for the ditching simulation of helicopter structures[C]//Proceedings of the 5th International Conference on Fluid Structure Interaction. Southampton: WIT Press, 2009, 105: 259-268.
    [17] QU Q L, HU M X, GUO H, et al. Study of ditching characteristics of transport aircraft by global moving mesh method[J]. Journal of Aircraft, 2015, 52(5): 1550-1558. doi: 10.2514/1.C032993
    [18] 吴宗成, 黄波恩, 吴亚聪. 滑移动网格在波浪水面迫降数值模拟中的应用[J]. 哈尔滨工业大学学报, 2019, 51(1): 80-86.

    WU Z C, HUANG B E, WU Y C. Application of sliding dynamic grid to wavy water ditching simulation[J]. Journal of Harbin Institute of Technology, 2019, 51(1): 80-86(in Chinese).
    [19] 杨晓彬, 许国冬. 基于重叠网格法的飞机水上降落水动力砰击载荷研究[J]. 振动与冲击, 2020, 39(2): 57-63.

    YANG X B, XU G D. Identification of hydrodynamic impact loads during the airplane ditching based on overset grid method[J]. Journal of Vibration and Shock, 2020, 39(2): 57-63(in Chinese).
  • 加载中
图(12)
计量
  • 文章访问数:  381
  • HTML全文浏览量:  112
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-29
  • 录用日期:  2022-12-16
  • 网络出版日期:  2023-02-08
  • 整期出版日期:  2024-10-31

目录

    /

    返回文章
    返回
    常见问答