Storage and transfer method of airport pavement structure information model based on IFC standard
-
摘要:
为解决机场跑道系统在全生命周期建筑信息模型(BIM)应用中的信息传递和数据交互问题,将工业基础类(IFC)标准在机场跑道系统进行扩展,建立机场道面结构的IFC实体架构,在此基础上创建面向运维应用的刚性道面板实体,并进行几何信息与属性信息的扩展;提出基于IFC的属性信息添加与传递方法,对信息传递过程中的属性信息丢失率进行分析。研究表明:通过建立IFC标准模型,可以实现机场跑道系统的信息传递和数据交互;采用基础模型族扩展法进行机场道面模型传递的属性信息丢失率高达84.21%;采用IFC解析扩展法首次传递可保证信息不丢失,但二次传递信息存在丢失问题;族模型IFC解析扩展法可实现信息首次传递不丢失,二次传递属性信息丢失率低至16.7%,并且采用不同IFC标准版本对模型传递过程中的属性信息丢失率产生较大影响。应用IFC标准进行机场领域扩展具有较高的可行性,所提的信息传递方法可实现机场道面全生命周期信息传递。研究成果可为机场飞行区新IFC实体的扩展提供支持,为机场工程数字化提供技术参考。
Abstract:To address the issues of information transfer and data sharing in the full-life-cycle building information modeling (BIM) application of the airport runway system, the industry foundation classes (IFC) standard was extended to the airport pavement structure. The IFC entity framework of the airport runway system was summarized. Besides, the rigid runway pavement entity considering the operation and maintenance stage was proposed. The graphical information and non-graphical information of the proposed entity were expanded. In addition, an analysis was conducted on the rate of attribute information loss during information model transfer, as well as the most effective way to add and transmit attribute information using the IFC standard. The study shows that the model based on the uniform IFC standard can transfer and share information about airport runway systems effectively. The information loss rate of the family parameter extension method during runway pavement model transfer is as high as 84.21%. The IFC file extension method can ensure the model information integrity during the first transfer process. However, the model information is lost during repeated transfer. A proposed method, combining both the family parameter extension and IFC file parsing, can achieve the model information integrity during the first transfer. In addition, the information loss rate is less than 16.7% during the second transfer. The information loss rate is also influenced by different versions of the IFC standard. It is necessary to extend the IFC entity in the airport domain. As a whole, the proposed information transfer method is appropriate for airport runway lifecycle information management. The research can provide support for the establishment of a new IFC entity in the airfield area, and make a technical reference for digital airport construction.
-
表 1 道面板新增属性集定义
Table 1. Added property set definition to pavement
属性集名称 使用的实体 类型值 说明 Pset_RunwayBlockCommon IfcRunwayBlock UserDefined 描述道面组成层特性和尺寸 Pset_PavementDiseaseCommon IfcRunwayBlock UserDefined 道面的常见病害类型和相关数据信息 Pset_PavementElementEvaluation IfcRunwayBlock UserDefined 道面评价属性(PCI、SCI、PCN等) Pset_PavementDate IfcRunwayBlock UserDefined 道面板运维监测数据信息 表 2 Pset_RunwayBlockCommon属性定义
Table 2. Pset_RunwayBlockCommon property definition
属性名称 数据类型 说明 PavementArea IfcAreaMeasure 道面板面积 PavementVolume IfcVolumeMeasure 道面板体积 VerticalSlope IfcPlaneAngleMeasure 纵坡坡度 RunwayLayer IfcCountMeasure 跑道层数 SufaceCourseSlope IfcPlaneAngleMeasure 面层坡度 SufaceCourseThickness IfcPositiveLengthMeasure 面层厚度 SufaceCourseMaterialType IfcMaterialSelect 面层材料 BaceCourseThickness IfcPositiveLengthMeasure 基层厚度 BaceCourseMaterialType IfcMaterialSelect 基层材料 CushronThickness IfcPositiveLengthMeasure 垫层厚度 CushronMaterialType IfcMaterialSelect 垫层材料 SubgradeThickness IfcPositiveLengthMeasure 道基厚度 SubgradeMaterialType IfcMaterialSelect 道基材料 ConstructionDate IfcDateTime 铺设时间 表 3 Pset_PavementDiseaseCommon属性定义
Table 3. Pset_PavementDiseaseCommon property definition
属性名称 属性类型 数据类型 说明 MaterialType IfcPropertySingleValue IfcMaterialSelect 跑道类型 DamageQuantity IfcPropertyTableValue IfcCountMeasure 单元板块损坏数量 PlateNumber IfcPropertyTableValue IfcCountMeasure 单元板块总数 DamageDensity IfcPropertyTableValue IfcCountMeasure 损坏密度 DamageType IfcPropertyTableValue IfcLabel 损坏类型 DamageCoordinates IfcPropertyTableValue IfcLabel 损坏道面板坐标 1Cracks:Longitudinal,Transversa and Diagonal IfcPropertySingleValue IfcLabel 1纵向、横向和斜向裂缝 2Corner Break IfcPropertySingleValue IfcLabel 2角隅断裂 3Shattered Slab/Intersecting Cracks IfcPropertySingleValue IfcLabel 3破碎板或交叉裂缝 4Settlement or Faulting IfcPropertySingleValue IfcLabel 4沉陷或错台 5Blowup IfcPropertySingleValue IfcLabel 5胀裂 6Alkali Silica Reaction(ASR) IfcPropertySingleValue IfcLabel 6填缝料损坏 7Joint Seal Damage IfcPropertySingleValue IfcLabel 7接缝破碎 8Pumping and bottom IfcPropertySingleValue IfcLabel 8唧泥和板底脱空 9Durability(“D”) Cracking IfcPropertySingleValue IfcLabel 9耐久性裂缝 10Shrinkage Cracking IfcPropertySingleValue IfcLabel 10收缩裂缝 11Pot hole IfcPropertySingleValue IfcLabel 11坑洞 12Scaling IfcPropertySingleValue IfcLabel 12起皮、龟裂和细微裂缝 13Spalling(Corner) IfcPropertySingleValue IfcLabel 13板角剥落 14Patching, Small IfcPropertySingleValue IfcLabel 14小补丁 15Patching, Large and Utility Cuts IfcPropertySingleValue IfcLabel 15大补丁或开挖补丁 SurveyDate IfcPropertyTableValue IfcDateTime 检测采集时间 SurveyStaff IfcPropertyTableValue IfcLabel 检测采集人员 表 4 Pset_PavementElementEvaluation属性定义
Table 4. Pset_PavementElementEvaluation property definition
属性名称 属性类型 数据类型 说明 PavementConditionIndex IfcPropertyTableValue IfcCountMeasure PCI SubgradeConditionIndex IfcPropertyTableValue IfcCountMeasure SCI PavementClassficationNumber IfcPropertyTableValue IfcCountMeasure PCN InternationalRoughnessIndex IfcPropertyTableValue IfcCountMeasure IRI 表 5 Pset_PavementDate属性定义
Table 5. Pset_PavementDate property definition
属性名称 属性类型 数据类型 说明 TargetID IfcPropertyTableValue IfcLabel 维修板块编号ID MaintainDate IfcPropertyTableValue IfcDateTime 维修时间 MaintainStaff IfcPropertyTableValue IfcLabel 维修人员 MaintainMaterialType IfcPropertyTableValue IfcCountMeasure 维修材料 ProcessMode IfcPropertyTableValue IfcLabel 处理方式 Remarks IfcPropertyTableValue IfcPositiveLengthMeasure 备注 表 6 不同信息传递方法属性信息丢失率比较
Table 6. Comparison of information loss rate for attributes of different information transmission methods
方法 传递次数 传递版本 η/% 已有族
(未新增属性)机场道面族
(新增属性)基础模型族
扩展法一次传递 IFC2×3 0 84.21 IFC4 0 100 二次传递 IFC2×3 0 100 IFC4 0 100 IFC解析
扩展法一次传递 IFC2×3 5 0 IFC4 100 100* 二次传递 IFC2×3 5 100* IFC4 100 100* 族模型IFC
解析扩展法一次传递 IFC2×3 0 0 IFC4 100 100* 二次传递 IFC2×3 5 16.7 IFC4 100 100* 注:“$* $”表示新增属性完全丢失而原有属性全部传递。 -
[1] ISO. Industry foundation classes (IFC) for data sharing in the construction and facility management industries-Part 1: Data schema: ISO 16739-1-2024[S]. Geneva: ISO, 2024. [2] 赖华辉, 侯铁, 钟祖良, 等. BIM数据标准IFC发展分析[J]. 土木工程与管理学报, 2020, 37(1): 126-133. doi: 10.3969/j.issn.2095-0985.2020.01.020LAI H H, HOU T, ZHONG Z L, et al. Analysis on development of BIM data standard IFC[J]. Journal of Civil Engineering and Management, 2020, 37(1): 126-133(in Chinese). doi: 10.3969/j.issn.2095-0985.2020.01.020 [3] 赖华辉, 侯铁, 钟祖良, 等. 基于知识图谱的国内IFC研究综述[J]. 土木工程与管理学报, 2020, 37(3): 96-102. doi: 10.3969/j.issn.2095-0985.2020.03.016LAI H H, HOU T, ZHONG Z L, et al. Review of domestic IFC research based on mapping knowledge domains[J]. Journal of Civil Engineering and Management, 2020, 37(3): 96-102(in Chinese). doi: 10.3969/j.issn.2095-0985.2020.03.016 [4] 赖华辉, 邓雪原, 刘西拉. 基于IFC标准的BIM数据共享与交换[J]. 土木工程学报, 2018, 51(4): 121-128.LAI H H, DENG X Y, LIU X L. IFC-based BIM data sharing and exchange[J]. China Civil Engineering Journal, 2018, 51(4): 121-128 (in Chinese). [5] 郭红领, 周颖, 叶啸天, 等. IFC数据模型至关系型数据库模型的自动映射[J]. 清华大学学报(自然科学版), 2021, 61(2): 152-160.GUO H L, ZHOU Y, YE X T, et al. Automated mapping from an IFC data model to a relational database model[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(2): 152-160(in Chinese). [6] YABUKI N, LI Z T. Development of new IFC-BRIDGE data model and a concrete bridge design system using multi-agents[C]//Proceedings of the Intelligent Data Engineering and Automated Learning. Berlin: Springer, 2006: 1259-1266. [7] LEE S H, KIM B G. IFC extension for road structures and digital modeling[J]. Procedia Engineering, 2011, 14: 1037-1042. doi: 10.1016/j.proeng.2011.07.130 [8] BORRMANN A, FLURL M, JUBIERRE J R, et al. Synchronous collaborative tunnel design based on consistency-preserving multi-scale models[J]. Advanced Engineering Informatics, 2014, 28(4): 499-517. doi: 10.1016/j.aei.2014.07.005 [9] 钟宇, 陈健, 陈国良, 等. 基于建筑信息模型技术的盾构隧道结构信息模型建模方法[J]. 岩土力学, 2018, 39(5): 1867-1876.ZHONG Y, CHEN J, CHEN G L, et al. Shield tunnel structure information modelling method based on building information modeling technology[J]. Rock and Soil Mechanics, 2018, 39(5): 1867-1876(in Chinese). [10] 王怀松, 王学林, 邹少文. 铁路信号IFC国际标准的研究与制定[J]. 铁道标准设计, 2019, 63(8): 162-168.WANG H S, WANG X L, ZOU S W. Research and development of IFC international standards for railway signaling[J]. Railway Standard Design, 2019, 63(8): 162-168(in Chinese). [11] 冯山群, 杨绪坤, 马永昌, 等. 基于IFC扩展的铁路隧道BIM数据存储标准研究[J]. 铁路技术创新, 2015(6): 24-27.FENG S Q, YANG X K, MA Y C, et al. Research on BIM data storage standard of railway tunnel based on IFC extension[J]. Railway Technical Innovation, 2015(6): 24-27(in Chinese). [12] 胡振中, 田佩龙, 李久林. 基于IFC的传感器信息存储与应用研究[J]. 图学学报, 2018, 39(3): 522-529.HU Z Z, TIAN P L, LI J L. Research on IFC-based storage and application of sensor information[J]. Journal of Graphics, 2018, 39(3): 522-529(in Chinese). [13] 董强, 刘英林, 李志辉. BIM技术在机场航站区建设施工中的应用[J]. 建筑技术, 2015, 46(12): 1118-1121. doi: 10.3969/j.issn.1000-4726.2015.12.017DONG Q, LIU Y L, LI Z H. Application of BIM technology in airport terminal area construction[J]. Architecture Technology, 2015, 46(12): 1118-1121(in Chinese). doi: 10.3969/j.issn.1000-4726.2015.12.017 [14] 戴轩, 王瀚雪, 蔡靖, 等. 我国机场BIM技术应用现状及运维阶段信息传递方法初探[C]// 2022世界交通运输大会. 北京: 人民交通出版社股份有限公司, 2022: 6.DAI X, WANG H X, CAI J, et al. A preliminary study on the application status and information transmission methods of BIM technology in airports in China[C]//Proceedings of the 2022 World Transport Congress. Beijing: People’s Communications Publishing House Co. , Ltd., 2022: 6(in Chinese). [15] 周俊波, 黄亚栋, 谭慧, 等. 鄂州民用机场配套工程中Civil 3d软件的应用[J]. 中华建设, 2020(增刊1): 111-113.ZHOU J B, HUANG Y D, TAN H, et al. Application of Civil 3d software in Ezhou civil airport supporting project[J]. China Construction, 2020(Sup 1): 111-113(in Chinese). [16] 赵健, 房健康, 宋扬, 等. BIM技术在南京禄口国际机场运维阶段的深入应用[J]. 土木建筑工程信息技术, 2015, 7(2): 50-55. doi: 10.3969/j.issn.1674-7461.2015.02.007ZHAO J, FANG J K, SONG Y, et al. Application of BIM technology in the operation of Nanjing lukou international airport[J]. Journal of Information Technology in Civil Engineering and Architecture, 2015, 7(2): 50-55(in Chinese). doi: 10.3969/j.issn.1674-7461.2015.02.007 [17] 董政民. BIM技术在航站楼运维管理中的应用: 以浦东国际机场T1航站楼为例[J]. 建筑经济, 2013, 34(9): 91-93.DONG Z M. BIM application in the airport terminal operation and maintenance management: Pudong International Airport terminal T1 as an example[J]. Construction Economy, 2013, 34(9): 91-93(in Chinese). [18] 杨冬, 刘勇, 邹家撇, 等. BIM技术在广州白云国际机场综合交通枢纽项目中的应用[J]. 施工技术, 2018, 47(6): 133-136.YANG D, LIU Y, ZOU J P, et al. Application of BIM technology in the Guangzhou Baiyun International Airport integrated transportation hub project[J]. Construction Technology, 2018, 47(6): 133-136 (in Chinese). [19] AI S D, MAO N, HE X. Research on rail BIM data storage standards based on IFC4 extension[J]. Railway Technology Innovation, 2017(4): 48-54. [20] TANG F L, MA T, ZHANG J H, et al. Integrating three-dimensional road design and pavement structure analysis based on BIM[J]. Automation in Construction, 2020, 113: 103152. doi: 10.1016/j.autcon.2020.103152 [21] 吴生海, 刘陕南, 刘永晓, 等. 基于Dynamo可视化编程建模的BIM技术应用与分析[J]. 工业建筑, 2018, 48(2): 35-38.WU S H, LIU S N, LIU Y X, et al. Application and analysis of BIM technology based on Dynamo visual programming modeling[J]. Industrial Construction, 2018, 48(2): 35-38(in Chinese). [22] 王茹, 权超超. 公路立交BIM参数化快速精确建模方法研究[J]. 图学学报, 2019, 40(4): 766-770.WANG R, QUAN C C. Research on fast and accurate modeling method of BIM parameterization for highway interchange[J]. Journal of Graphics, 2019, 40(4): 766-770(in Chinese). [23] 李岳, 胡宇祺, 蔡靖, 等. 基于变权重-正态云模型的飞机轮胎滑水风险[J]. 北京航空航天大学学报, 2023, 49(9): 2299-2305.LI Y, HU Y Q, CAI J, et al. Hydroplaning risk of aircraft tire based on variable weight theory-normal cloud model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(9): 2299-2305 (in Chinese).