留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合压电材料虚拟仿真实验软件的设计与开发

耿志挺 赵鉴侨

耿志挺,赵鉴侨. 复合压电材料虚拟仿真实验软件的设计与开发[J]. 北京航空航天大学学报,2024,50(11):3377-3381 doi: 10.13700/j.bh.1001-5965.2022.0826
引用本文: 耿志挺,赵鉴侨. 复合压电材料虚拟仿真实验软件的设计与开发[J]. 北京航空航天大学学报,2024,50(11):3377-3381 doi: 10.13700/j.bh.1001-5965.2022.0826
GENG Z T,ZHAO J Q. Design and development of virtual simulation experiment software of composite piezoelectric materials[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3377-3381 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0826
Citation: GENG Z T,ZHAO J Q. Design and development of virtual simulation experiment software of composite piezoelectric materials[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3377-3381 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0826

复合压电材料虚拟仿真实验软件的设计与开发

doi: 10.13700/j.bh.1001-5965.2022.0826
基金项目: 清华大学本科教学改革项目(ZY01-02)
详细信息
    通讯作者:

    E-mail:qhgzt@tsinghua.edu.cn

  • 中图分类号: G434

Design and development of virtual simulation experiment software of composite piezoelectric materials

Funds: Tsinghua University Undergraduate Teaching Reform Project (ZY01-02)
More Information
  • 摘要:

    复合压电材料是学习压电理论的优秀载体,但是用于复合压电材料虚拟实验教学的仿真软件仍有待开发。基于此,开发一款基于多孔碳酸钡和聚偏二氟乙烯(BTO@PVDF)复合压电材料模型的虚拟仿真实验教学软件,帮助学生理解基础压电理论、探究复合材料的压电响应特点。该软件整合材料设计、制备、表征的完整流程,设计多项可调参数、多层次展示结果,使学生更灵活地去自主实现复合压电材料综合性虚拟仿真,完成基于复合压电材料的虚拟实验。该软件添加了视频讲解、互动问答、知识点提示等互动,提高教学趣味性的同时,可培养学生独立思考的能力。

     

  • 图 1  压电材料的有限元仿真模型

    Figure 1.  Finite element simulation model of piezoelectric materials

    图 2  压电常数d33g33与BTO质量分数的关系

    Figure 2.  Relationship between piezoelectric constants d33 and g33 and BTO mass fraction

    图 3  所选材料的主要参数界面

    Figure 3.  Interface of main parameters of selected materials

    图 4  设置几何参数与掺杂界面

    Figure 4.  Interface of setting geometric parameters and doping

    图 5  查看已选参数并提交计算界面

    Figure 5.  Interface of view selected parameters and submit calculation

    图 6  应力、电场、位移云图的变化动画及变化曲线界面

    Figure 6.  Interface of animations and curves of stress, electric field and displacement cloud atlas

  • [1] 刘洋, 汪尧进. 柔性压电材料及器件应用[J]. 硅酸盐学报, 2022, 50(3): 625-641.

    LIU Y, WANG Y J. Flexible piezoelectric materials and device application[J]. Journal of the Chinese Ceramic Society, 2022, 50(3): 625-641(in Chinese).
    [2] JEONG C K, BAEK C, KINGON A I, et al. Lead-free perovskite nanowire-employed piezopolymer for highly efficient flexible nanocomposite energy harvester[J]. Small, 2018, 14(19): 1704022.
    [3] 朱嘉林, 王丽坤, 张福学. 0-3型压电复合材料的硬球无规堆积模型[J]. 压电与声光, 2000, 22(4): 273-276.

    ZHU J L, WANG L K, ZHANG F X. A model of hard sphere haphazard packing about the 0-3 piezocomposite for transducer and its effictive poling electric filed[J]. Piezoelectrics & Acoustooptics, 2000, 22(4): 273-276(in Chinese).
    [4] LEWIS T J. Interfaces are the dominant feature of dielectrics at the nanometric level[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5): 739-753. doi: 10.1109/TDEI.2004.1349779
    [5] LIU Y, YANG T N, ZHANG B, et al. Structural insight in the interfacial effect in ferroelectric polymer nanocomposites[J]. Advanced Materials, 2020, 32(49): e2005431. doi: 10.1002/adma.202005431
    [6] 王树彬, 韩杰才, 杜善义. 压电陶瓷/聚合物复合材料的制备工艺及其性能研究进展[J]. 功能材料, 1999, 30(2): 2-6.

    WANG S B, HAN J C, DU S Y. Research progress on preparation technology and properties of piezoelectric ceramic/polymer composites[J]. Journal of Functional Materials, 1999, 30(2): 2-6(in Chinese).
    [7] 苏晓晓. BTO/PVDF柔性压电复合薄膜的制备及其发电机理研究[D]. 太原: 太原理工大学, 2020.

    SU X X. Research on the preparation of BTO/PVDF flexible piezoelectric composite film and its generating mechanism[D]. Taiyuan: Taiyuan University of Technology, 2020(in Chinese).
    [8] 逯行, 朱陶, 徐晶晶, 等. 高校虚拟仿真实验教学的基本问题与趋势[J]. 现代教育技术, 2021, 31(12): 61-68.

    LU H, ZHU T, XU J J, et al. Basic problems and trends of virtual simulation experiment teaching in colleges and universities[J]. Modern Educational Technology, 2021, 31(12): 61-68(in Chinese).
    [9] 王建华, 段建东, 姬军鹏, 等. 新工科背景下虚拟仿真实验研究与实践[J]. 中国教育信息化, 2021(22): 33-37.

    WANG J H, DUAN J D, JI J P, et al. Research and practice of virtual simulation experiment under the background of new engineering[J]. The Chinese Journal of ICT in Education, 2021(22): 33-37(in Chinese).
    [10] 张宁, 赵毅强, 兰馗博, 等. “新工科” 背景下关于虚拟仿真实验的几点思考和建议[J]. 实验技术与管理, 2020, 37(3): 185-188.

    ZHANG N, ZHAO Y Q, LAN K B, et al. Some thoughts and suggestions on virtual simulation experiment under background of “New engineering”[J]. Experimental Technology and Management, 2020, 37(3): 185-188(in Chinese).
    [11] 卢艳丽, 董文强, 王永欣, 等. 材料类专业虚拟仿真实验教学中心的建设与实践[J]. 实验室研究与探索, 2018, 37(11): 153-157.

    LU Y L, DONG W Q, WANG Y X, et al. Exploration and practice of the virtual simulation experimental teaching center for material professional construction[J]. Research and Exploration in Laboratory, 2018, 37(11): 153-157(in Chinese).
    [12] 崔勇, 王秋生, 富立, 等. 基于有限元的PVDF微执行器虚拟仿真实验探索[J]. 电气电子教学学报, 2019, 41(6): 122-125.

    CUI Y, WANG Q S, FU L, et al. Virtual simulation experiment design of PVDF micro-actuator based on finite element method[J]. Journal of Electrical & Electronic Education, 2019, 41(6): 122-125(in Chinese).
    [13] 崔勇, 富立, 刘颖异, 等. 多物理场虚拟仿真的现代检测技术实验课程探索[J]. 实验室研究与探索, 2019, 38(9): 221-223.

    CUI Y, FU L, LIU Y Y, et al. Research on the experimental course of modern measurement technology based on multiple physical field’s virtual simulation[J]. Research and Exploration in Laboratory, 2019, 38(9): 221-223(in Chinese).
    [14] 张冬至, 童俊, 任旭虎, 等. 压电喷墨驱动器结构优化与仿真分析[J]. 实验室研究与探索, 2013, 32(3): 87-91.

    ZHANG D Z, TONG J, REN X H, et al. Structure optimization and computer simulation of the piezoelectric ink-jet[J]. Research and Exploration in Laboratory, 2013, 32(3): 87-91(in Chinese).
    [15] 王晓敏, 高志强, 闫晋文. 国内高校材料学科虚拟仿真实验教学的发展探究[J]. 中国大学教学, 2021(3): 78-85. doi: 10.3969/j.issn.1005-0450.2021.03.017

    WANG X M, GAO Z Q, YAN J W. Research on the development of virtual simulation experiment teaching of materials subject in domestic universities[J]. China University Teaching, 2021(3): 78-85(in Chinese). doi: 10.3969/j.issn.1005-0450.2021.03.017
    [16] 王卫国, 胡今鸿, 刘宏. 国外高校虚拟仿真实验教学现状与发展[J]. 实验室研究与探索, 2015, 34(5): 214-219. doi: 10.3969/j.issn.1006-7167.2015.05.058

    WANG W G, HU J H, LIU H. Current situation and development of virtual simulation experimental teaching of overseas universities[J]. Research and Exploration in Laboratory, 2015, 34(5): 214-219(in Chinese). doi: 10.3969/j.issn.1006-7167.2015.05.058
    [17] 熊宏齐. 虚拟仿真实验教学助推理论教学与实验教学的融合改革与创新[J]. 实验技术与管理, 2020, 37(5): 1-4.

    XIONG H Q. Promotion of reform and innovation on integration of theory teaching and experimental teaching by virtual simulation experiment teaching[J]. Experimental Technology and Management, 2020, 37(5): 1-4(in Chinese).
    [18] 田元, 周晓蕾, 宁国勤, 等. 虚拟仿真实验教学对学生学习效果的影响研究: 基于35项实验和准实验研究的元分析[J]. 现代教育技术, 2021, 31(8): 42-49. doi: 10.3969/j.issn.1009-8097.2021.08.005

    TIAN Y, ZHOU X L, NING G Q, et al. Research on influence of virtual simulation experiment teaching on students' learning effect—A meta-analysis based on 35 experiments and quasi-experimental studies[J]. Modern Educational Technology, 2021, 31(8): 42-49(in Chinese). doi: 10.3969/j.issn.1009-8097.2021.08.005
  • 加载中
图(6)
计量
  • 文章访问数:  211
  • HTML全文浏览量:  80
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-04
  • 录用日期:  2022-12-09
  • 网络出版日期:  2023-05-29
  • 整期出版日期:  2024-11-30

目录

    /

    返回文章
    返回
    常见问答