留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向终端区的航空器绿色轨迹优化

任广建 何家兴

任广建,何家兴. 面向终端区的航空器绿色轨迹优化[J]. 北京航空航天大学学报,2024,50(11):3402-3409 doi: 10.13700/j.bh.1001-5965.2022.0830
引用本文: 任广建,何家兴. 面向终端区的航空器绿色轨迹优化[J]. 北京航空航天大学学报,2024,50(11):3402-3409 doi: 10.13700/j.bh.1001-5965.2022.0830
REN G J,HE J X. Green trajectory optimization of aircraft in terminal area[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3402-3409 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0830
Citation: REN G J,HE J X. Green trajectory optimization of aircraft in terminal area[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3402-3409 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0830

面向终端区的航空器绿色轨迹优化

doi: 10.13700/j.bh.1001-5965.2022.0830
基金项目: 国家自然科学基金(U2333206); 中央高校基本科研业务费专项资金(2021RC214)
详细信息
    通讯作者:

    E-mail:zc416418@126.com

  • 中图分类号: V355;U8

Green trajectory optimization of aircraft in terminal area

Funds: National Natural Science Foundation of China (U2333206); The Fundamental Research Funds for the Central Universities (2021RC214)
More Information
  • 摘要:

    航空运输是中国综合交通领域的重要支柱,其绿色运行的研究对于可持续发展的意义重大。以绿色优化为核心,以减少碳排放为目标,面向终端区对航空器的轨迹进行优化研究,有效减少了碳排放,并得出有效结论。探索终端区飞行对于环境的影响,建立发动机排放模型;基于现有的广播式自动相关监视(ADS-B) 数据和航空器A321机型巡航性能,对数据进行分析归纳;建立划分航段的整数规划模型,研究飞机在航段内的具体情况,结合飞机改变高度、平飞2种状态对航段区间水平距离长短进行分类讨论,得到航迹排放模型,依据模型假设和航行规则建立约束,利用粒子群优化(PSO) 算法进行求解,模型增加了高度层改变约束,优化飞行状态,减轻管制负荷,使优化后航迹的碳排放较优化前降低了8.45%。通过对比优化前后航迹发现,在减少污染物排放的目标下,连续下降的进近策略比梯度下降策略更加高效。

     

  • 图 1  标准LTO循环[9]

    Figure 1.  Standard LTO cycle [9]

    图 2  垂直剖面上划分航段后的空域模型

    Figure 2.  Airspace model after dividing flight segments on vertical section

    图 3  航段内平飞模型

    Figure 3.  Horizontal flight model in flight segment

    图 4  区间长度足够时,以爬升为例的航段内变高度层飞行模型

    Figure 4.  Flight model with varying altitude in flight segment, taking climbing as an example, when interval length is enough

    图 5  区间长度不够时,以爬升为例的航段内变高度层飞行模型

    Figure 5.  Flight model with varying altitude in flight segment, taking climbing as an example, when interval length is not enough

    图 6  模型的进近航迹(以爬升为例)

    Figure 6.  Approach trajectory of model,taking climbing as an example

    图 7  航班的现有航迹示意图

    Figure 7.  Schematic diagram of existing flight trajectory

    图 8  航段区间距离

    Figure 8.  Distance between flight segments

    图 9  求解收敛过程

    Figure 9.  Solution convergence process

    图 10  优化前后航迹对比

    Figure 10.  Comparison of trajectory before and after optimization

    图 11  优化前后污染物排放量对比

    Figure 11.  Comparison of emissions before and after optimization

    表  1  相对高度层编号对应的飞行高度层

    Table  1.   Flight altitude layers corresponding to relative altitude layer numbers

    相对高度层编号 高度/m
    1 0~900
    2 900~1500
    3 15002100
    4 21002700
    5 27003300
    6 33003900
    7 39004500
    8 45005100
    9 51005700
    10 57006300
    11 63006900
    12 69007500
    下载: 导出CSV

    表  2  航班进近过程的ADS-B数据

    Table  2.   ADS-B data of flight approach process

    时刻航向/(°)速度/(km·h−1)高度/m下降率/(m·s−1)
    12:47:42257087468−292
    12:49:46256896828−465
    12:50:56256666149−595
    12:51:29256535814−588
    12:52:46256345075−554
    12:54:07255814511−315
    12:56:41255623932−174
    13:00:473275233330−143
    13:03:233275052629−443
    13:07:003294782247−410
    13:09:003323941849−389
    13:11:003333721363−362
    13:13:0033628810−312
    下载: 导出CSV

    表  3  A321各高度层发动机参数与飞行性能数据

    Table  3.   A321 engine parameters and flight performance data at different altitudes

    高度/m 相对高度层编号 爬升功率/(kg·s−1) 飞行速度/(m·s−1) 平飞功率/(kg·s−1) 爬升率/(m·s−1) 下降功率/(kg·s−1) 下降率/(m·s−1)
    900 1 1.56 83.33 4.60 9.86 0.38 11.45
    1500 2 1.77 105.56 4.48 9.04 0.37 11.50
    2100 3 1.91 133.60 4.36 4.84 0.37 12.48
    2700 4 2.00 140.28 4.23 4.24 0.36 12.10
    3300 5 2.08 145.28 4.11 6.96 0.35 12.55
    3900 6 2.14 156.11 3.99 5.38 0.35 10.16
    4500 7 2.18 161.39 3.86 3.21 0.34 9.34
    5100 8 2.20 176.11 3.74 5.88 0.33 11.10
    5700 9 2.18 181.39 3.61 4.25 0.32 10.78
    6300 10 2.14 185.00 3.48 7.87 0.32 13.48
    6900 11 2.06 191.39 3.35 5.61 0.31 13.87
    7500 12 1.94 196.67 3.23 3.50 0.30 11.33
    下载: 导出CSV
  • [1] 樊守彬. 美国机场大气污染物控制途径及效果[J]. 环境科学与管理, 2011, 36(3): 40-43.

    FAN S B. Control measures and efficiency of air pollutant from aircraft in USA[J]. Environmental Science and Management, 2011, 36(3): 40-43(in Chinese).
    [2] 殷润泽. 基于环境影响的终端区进离场航线优化研究[D]. 南京: 南京航空航天大学, 2018: 1-38.

    YIN R Z. Research on optimization of arrival and departure routes for environmental impact in TMA[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 1-38(in Chinese).
    [3] LÜHRS B, NIKLASS M, FROEMMING C, et al. Cost-benefit assessment of 2D and 3D climate and weather optimized trajectories[C]//Proceedings of the 16th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2016.
    [4] SIDIROPOULOS S, MAJUMDAR A, HAN K, et al. A framework for the classification and prioritization of arrival and departure routes in multi-airport systems terminal manoeuvring areas[C]//Proceedings of the 15th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2015.
    [5] ZHOU J, CAFIERI S, DELAHAYE D, et al. Optimal design of SIDs/STARs in TMA using simulated annealing[C]//Proceedings of the IEEE/AIAA 35th Digital Avionics Systems Conference. Piscataway: IEEE Press, 2016: 1-8.
    [6] ZHOU J, CAFIERI S, DELAHAYE D, et al. Optimization-based design of departure and arrival routes in terminal maneuvering area[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(11): 2889-2904. doi: 10.2514/1.G002728
    [7] 孙见忠, 左洪福, 刘鹏鹏, 等. 航空发动机污染物排放量估算方法[J]. 交通运输工程学报, 2012, 12(2): 53-61.

    SUN J Z, ZUO H F, LIU P P, et al. Estimation method of aeroengine pollution emissions[J]. Journal of Traffic and Transportation Engineering, 2012, 12(2): 53-61(in Chinese).
    [8] 陈林. 我国航空运输LTO阶段和巡航阶段排放量测算与预测[J]. 北京交通大学学报(社会科学版), 2013, 12(4): 27-33.

    CHEN L. Measurement and forecast of the emissions from Chinese air transportation LTO and cruise phases[J]. Journal of Beijing Jiaotong University (Social Sciences Edition), 2013, 12(4): 27-33(in Chinese).
    [9] 闫国华, 吴鹏. 飞机完整航线二氧化碳排放量估算[J]. 装备制造技术, 2013(8): 29-31.

    YAN G H, WU P. The aircraft the complete routes CO2 emissions estimate[J]. Equipment Manufacturing Technology, 2013(8): 29-31(in Chinese).
    [10] 田勇, 万莉莉, 叶博嘉, 等. 基于降低温室效应的飞行高度层分配优化[J]. 西南交通大学学报, 2018, 53(2): 400-405.

    TIAN Y, WAN L L, YE B J, et al. Flight level allocation optimization to reduce greenhouse effect[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 400-405(in Chinese).
    [11] TIAN Y, WAN L L, HAN K, et al. Optimization of terminal airspace operation with environmental considerations[J]. Transportation Research Part D: Transport and Environment, 2018, 63: 872-889. doi: 10.1016/j.trd.2018.06.018
    [12] LIU F Z, HU M H, LV W Y, et al. Research on optimization of aircraft climb trajectory considering environmental impact[J]. Journal of Advanced Transportation, 2021, 2021(S1): 6677329.
    [13] 李杰, 杨好天, 王兵, 等. 民航飞机起飞推力对油耗和排放的影响分析[J]. 交通运输系统工程与信息, 2021, 21(6): 283-288.

    LI J, YANG H T, WANG B, et al. Influence of takeoff thrust on fuel consumption and emissions of civil aircraft[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(6): 283-288(in Chinese).
    [14] 胡荣, 王德芸, 冯慧琳, 等. 碳达峰视角下的机场航空器碳排放预测[J]. 交通运输系统工程与信息, 2021, 21(6): 257-263.

    HU R, WANG D Y, FENG H L, et al. Prediction of aircraft CO2 emission from perspective of CO2 emission peak[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(6): 257-263(in Chinese).
    [15] 郑丽君, 胡荣, 张军峰, 等. 高峰时段下离港航空器绿色滑行策略设计与评价[J]. 北京航空航天大学学报, 2019, 45(11): 2320-2326.

    ZHENG L J, HU R, ZHANG J F, et al. Design and evaluation of green taxiing strategy for departure aircraft during peak hours[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2320-2326(in Chinese).
    [16] 王中凤燕. 航空器绿色轨迹优化研究[D]. 南京: 南京航空航天大学, 2017: 32-56.

    WANG Z F Y. Aircraft trajectory optimization based on environmental impact[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 32-56(in Chinese).
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  450
  • HTML全文浏览量:  90
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-04
  • 录用日期:  2023-03-17
  • 网络出版日期:  2023-03-24
  • 整期出版日期:  2024-11-30

目录

    /

    返回文章
    返回
    常见问答