Influence of gap between splitter plate and side wall on performance of TBCC exhaust system
-
摘要:
为研究涡轮基组合循环(TBCC)排气系统的分流板与侧壁之间的缝隙对其性能的影响,利用数值仿真方法研究不同缝隙长度和宽度下喷管性能参数变化规律,针对涡轮通道和冲压通道在不同工作状态下有无缝隙对喷管性能的影响进行研究。结果表明,在喷管双通道均为欠膨胀状态时,分流板与侧壁之间存在缝隙漏气的情况下,对于漏出气体的涡轮通道,随着缝隙长度的增加,其推力系数下降、升力增加,而冲压通道推力系数几乎无变化,但升力增加。缝隙宽度变化对喷管性能的影响与长度的影响规律一致。此外,通过对不同喷管工作状态的研究发现,缝隙的存在会降低推力系数,缝隙的相对宽度为0.033、相对长度为0.31时,2.8%的漏气量能造成超过1%的推力系数的损失。
Abstract:In order to study the influence of the gap between splitter plate and side wall of a turbine-based combined cycle (TBCC) exhaust system on its performance, the numerical simulation method was used to analyze the influence of different gap lengths and widths on the performance parameters of the nozzle. Then, the influence of whether there was a gap between the turbine channel and the stamping channel under different working conditions on the nozzle performance was studied. The results show that when two channels of the nozzle are under-expanded, there is a gap between splitter plate and side wall. For the turbine channel with gas leakage, the thrust coefficient of the turbine channel decreases, and the lift increases with the increase in the gap length, while the thrust coefficient of the stamping channel has almost no change, but the lift increases. In addition, the influence of gap width change on nozzle performance is consistent with that of length. The research on different nozzle working conditions finds that the existence of gaps always reduces the thrust coefficient. When the relative width and length of the gap are 0.033 and 0.31, 2.8% of the gas leakage can cause more than 1% loss of the thrust coefficient.
-
Key words:
- turbine based combined cycle /
- splitter plate /
- gap /
- gas leakage /
- thrust coefficient
-
表 1 组合喷管边界条件参数
Table 1. Parameter setting of boundary condition of combined nozzle
$P_{\mathrm{tur}}^* $/kPa $P_{\mathrm{ram}}^* $/kPa $T_{\mathrm{tur}}^* $/K $T_{\mathrm{ram}}^* $/K H/km 185.0 145.0 2 072 1 397 16.8 表 2 不同分流板缝隙长度下的漏气量
Table 2. Gas leakage under different gap lengths of splitter plate
漏气长度l/Ls 结构 流量/(kg·s−1) 漏气量(相对于涡轮流量)/% 0 涡轮 0.141 7 0 冲压 0.065 2 0.24 涡轮 0.142 0 1.54 冲压 0.065 1 0.31 涡轮 0.142 7 2.12 冲压 0.065 1 0.51 涡轮 0.145 6 3.99 冲压 0.065 1 注:漏气量=泄漏量/涡轮流量×100%。 表 3 喷管各通道壁面压力积分
Table 3. Pressure integral of each part of nozzle
N 部位 l/Ls=0 l/Ls=0.24 l/Ls=0.31 l/Ls=0.51 x方向 y方向 x方向 y方向 x方向 y方向 x方向 y方向 冲压通道下壁面 −0.12 −64.82 −0.11 −64.89 −0.13 −64.99 −0.12 −65.02 分流板下壁面 −0.04 83.73 −0.05 84.53 −0.06 85.00 −0.10 86.22 分流板上壁面 −49.04 −390.48 −48.21 −384.70 −47.90 −382.41 −46.90 −375.45 涡轮通道上壁面 125.71 430.03 126.29 426.09 125.98 424.77 124.45 421.17 表 4 不同分流板缝隙宽度下的漏气量
Table 4. Gas leakage under different gap widths of splitter plate
w/h 结构 流量/(kg·s−1) 漏气量
(相对于涡轮流量)/%0 涡轮 0.141 7 0 冲压 0.065 2 0.017 涡轮 0.143 3 1.29 冲压 0.065 1 0.033 涡轮 0.144 7 2.88 冲压 0.065 1 0.047 涡轮 0.145 6 3.99 冲压 0.065 1 表 5 4种不同状态边界条件设置
Table 5. Boundary conditions for four different states
工况 $P_{\mathrm{tur}}^* $/kPa $P_{\mathrm{ram}}^* $/kPa $T_{\mathrm{tur}}^* $/K $T_{\mathrm{ram}}^* $/K Pb/kPa 1 185.0 145.0 2072 1397 9.054 2 31.7 25.0 1000 800 9.054 3 185.0 25.0 2072 800 9.054 4 31.7 145.0 1000 1397 9.054 表 6 不同状态下有无漏气的喷管性能
Table 6. Nozzle performance with or without gas leakage under different states
工况 缝隙宽度 Cfx L/N 漏气量/% 1 w/h=0 0.938 5 63.07 0 w/h=0.033 0.925 3 69.31 2.88 2 w/h=0 0.909 9 −3.34 0 w/h=0.033 0.898 4 −3.13 2.59 3 w/h=0 0.930 9 49.15 0 w/h=0.033 0.9124 51.98 2.88 4 w/h=0 0.9420 11.61 0 w/h=0.033 0.9410 11.89 0.26 -
[1] 王占学, 刘增文, 王鸣, 等. 涡轮基组合循环发动机技术发展趋势和应用前景[J]. 航空发动机, 2013, 39(3): 12-17. doi: 10.3969/j.issn.1672-3147.2013.03.003WANG Z X, LIU Z W, WANG M, et al. Future development and application prospect of turbine based combined cycle engine[J]. Aeroengine, 2013, 39(3): 12-17(in Chinese). doi: 10.3969/j.issn.1672-3147.2013.03.003 [2] 左林玄, 张辰琳, 王霄, 等. 高超声速飞机动力需求探讨[J]. 航空学报, 2021, 42(8): 525798.ZUO L X, ZHANG C L, WANG X, et al. Requirement of hypersonic aircraft power[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525798(in Chinese). [3] KOBAYASHI H, TANATSUGU N. Optimization method on TSTO spaceplane system powered by airbreather[C]// Proceedings of the 37th Joint Propulsion Conference and Exhibit. Reston: AIAA, 2001: AIAA2001-3965. [4] OUZTS P. Mode transition design considerations for an airbreathing combined-cycle hypersonic vehicle[C]// Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2008: AIAA2008-2621. [5] BULMAN M, SIEBENHAAR A. Combined cycle propulsion: aerojet innovations for practical hypersonic vehicles[C]// Proceedings of the 17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2011: AIAA2011-2397. [6] 黄伟, 夏智勋. 美国高超声速飞行器技术研究进展及其启示[J]. 国防科技, 2011, 32(3): 17-20,25. doi: 10.3969/j.issn.1671-4547.2011.03.004HUANG W, XIA Z X. Research progress and apocalypses on the American hypersonic vehicle technology[J]. National Defense Science & Technology, 2011, 32(3): 17-20, 25(in Chinese). doi: 10.3969/j.issn.1671-4547.2011.03.004 [7] 刘晓波, 罗月培, 曾慧, 等. 国外TBCC关键技术及试验设备研究综述[J]. 燃气涡轮试验与研究, 2016, 29(4): 51-56. doi: 10.3969/j.issn.1672-2620.2016.04.011LIU X B, LUO Y P, ZENG H, et al. An overview of key technology and test facility for turbine-based combined cycle propulsion study overseas[J]. Gas Turbine Experiment and Research, 2016, 29(4): 51-56(in Chinese). doi: 10.3969/j.issn.1672-2620.2016.04.011 [8] 徐惊雷. 超燃冲压及TBCC组合循环发动机尾喷管设计方法研究进展[J]. 推进技术, 2018, 39(10): 2236-2251.XU J L. Research progress of nozzle design method for scramjet and turbine based combined cycle[J]. Journal of Propulsion Technology, 2018, 39(10): 2236-2251(in Chinese). [9] EDWARDS C, SMALL W, WEIDNER J, et al. Studies of scramjet/airframe integration techniques for hypersonic aircraft[C]// Proceedings of the 13th Aerospace Sciences Meeting. Reston: AIAA, 1975. [10] DEERE K, ASBURY S. An experimental and computational investigation of a translating throat single expansion-ramp nozzle[C]// Proceedings of the 32nd Joint Propulsion Conference and Exhibit. Reston: AIAA, 1996: AIAA1996-2540. [11] 庞丽娜, 徐惊雷, 葛建辉. 超燃冲压发动机喷管下唇板可调方案[J]. 航空动力学报, 2015, 30(7): 1685-1690.PANG L N, XU J L, GE J H. Scramjet nozzle with adjustable cowl scheme[J]. Journal of Aerospace Power, 2015, 30(7): 1685-1690(in Chinese). [12] 葛建辉, 徐惊雷, 庞丽娜, 等. Scramjet尾喷管几何调节方案的计算与实验研究[J]. 推进技术, 2013, 34(9): 1158-1164.GE J H, XU J L, PANG L N, et al. CFD and experimental investigation for an adjustable scramjet nozzle[J]. Journal of Propulsion Technology, 2013, 34(9): 1158-1164(in Chinese). [13] 杨承宇, 张靖周, 单勇. 单边膨胀喷管红外辐射特性的数值模拟[J]. 航空学报, 2010, 31(10): 1919-1926.YANG C Y, ZHANG J Z, SHAN Y. Numerical simulation on infrared radiation characteristics of single expansion ramp nozzles[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(10): 1919-1926(in Chinese). [14] 张堃元, 张荣学, 徐辉. 非对称大膨胀比喷管研究[J]. 推进技术, 2001, 22(5): 380-382. doi: 10.3321/j.issn:1001-4055.2001.05.008ZHANG K Y, ZHANG R X, XU H. Investigation of single expansion ramp nozzle[J]. Journal of Propulsion Technology, 2001, 22(5): 380-382(in Chinese). doi: 10.3321/j.issn:1001-4055.2001.05.008 [15] 刘爱华, 王占学. 二次流喷射对喷管流场性能的影响[J]. 推进技术, 2007, 28(2): 144-147. doi: 10.3321/j.issn:1001-4055.2007.02.008LIU A H, WANG Z X. Effect of secondary flow injection on flow field and performance of nozzle[J]. Journal of Propulsion Technology, 2007, 28(2): 144-147(in Chinese). doi: 10.3321/j.issn:1001-4055.2007.02.008 [16] LV Z, XU J L, MO J W. Numerical investigation of improving the performance of a single expansion ramp nozzle at off-design conditions by secondary injection[J]. Acta Astronautica, 2017, 133: 233-243. doi: 10.1016/j.actaastro.2017.01.013 [17] 王庆伟, 张相毅, 徐学邈, 等. 射流角度对双缝射流喷管流场影响的研究[J]. 燃气涡轮试验与研究, 2006, 19(4): 27-29, 42. doi: 10.3969/j.issn.1672-2620.2006.04.006WANG Q W, ZHANG X Y, XU X M, et al. Investigation on the influence of multiple injection ports in a nozzle for fluidic thrust vectoring[J]. Gas Turbine Experiment and Research, 2006, 19(4): 27-29, 42(in Chinese). doi: 10.3969/j.issn.1672-2620.2006.04.006 [18] 张相毅, 王如根, 周敏, 等. 单缝和双缝射流注入对二元喷管推力矢量的影响[J]. 推进技术, 2007, 28(6): 629-632. doi: 10.3321/j.issn:1001-4055.2007.06.008ZHANG X Y, WANG R G, ZHOU M, et al. Effects of single and dual injection ports on thrust vector for 2D nozzle[J]. Journal of Propulsion Technology, 2007, 28(6): 629-632(in Chinese). doi: 10.3321/j.issn:1001-4055.2007.06.008 [19] WAITHE K, DEERE K. An experimental and computational investigation of multiple injection ports in a convergent-divergent nozzle for fluidic thrust vectoring[C]// Proceedings of the 21st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2003: AIAA2003-3802.